您的位置: 首页 > 中文期刊论文 > 详情页

基于多模态特征融合的时间序列异常检测

作   者:
张国华燕雪峰关东海
作者机构:
南京航空航天大学计算机科学与技术学院软件新技术与产业化协同创新中心
关键词:
时间序列长短期记忆网络注意力机制一维卷积神经网络异常检测
期刊名称:
计算机科学
i s s n:
1002-137X
年卷期:
2023 年 S1 期
页   码:
548-554
摘   要:
多元时间序列的有效异常检测对于数据的分析挖掘具有重要意义。然而,已有的检测方法大多基于单模态,不能有效利用时间序列在多模态空间中的分布信息,对于多模态特征缺乏自适应融合方式且难以提取其时空依赖关系。为此,提出了一种多模态特征融合的时间序列异常检测方法,建立了一个多模态特征自适应融合模块,通过一维卷积网络和软选择方式对多元时间序列的多模态特征进行自适应融合。对于融合后的多模态特征,构建由时间注意力和空间注意力组成的时空注意力模块,同时提取其时间和空间依赖关系得到时空注意力向量,由时空注意力向量得到模型预测结果。通过学习正常样本分布,根据预测值与真实值的误差度量实现异常检测。在4个公开数据集上进行测试,结果表明,所提方法优于其他模型,证明了所提方法的有效性。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充