您的位置:
首页
>
中文期刊论文
>
详情页
基于贝叶斯网络的大数据安全动态风险评估模型研究
- 作 者:
-
廖天颖;
杨斯博;
窦润亮;
- 作者机构:
-
天津大学;
- 关键词:
-
贝叶斯网络;
科技数据;
评估指标体系;
大数据安全;
动态风险评估模型;
- 期刊名称:
- 网络空间安全
- i s s n:
- 2096-2282
- 年卷期:
-
2023 年
14 卷
001 期
- 页 码:
- 60-68
- 摘 要:
-
[目的/意义]随着全球大数据产业的不断发展,大数据安全风险评估已成为数据安全管理工作中的一项核心内容.为了有效地应对大数据环境下的安全风险复杂性和不确定性,亟需构建一套科学、有效的安全风险评估方法.[方法/过程]提出了一种基于贝叶斯网络的大数据安全动态风险评估模型.这种模型在对大数据环境下风险传播机理剖析的基础上,构建一套风险评估流程步骤,并通过提取风险要素设计风险评估指标体系,最终生成适应大数据安全动态风险评估要求的贝叶斯网络推理模型.模型通过选取某单位实际科技数据,借助GeNIe3.0可视化分析软件,完成了模型参数学习及其因果推理等分析过程.[结果/结论]基于数值实验的分析结果显示,天津市某单位科技大数据安全风险等级为高级,需加强对"数据泄露"风险的有效管控.实验结果验证了所构建模型的有效性和适应性,具有一定的应用推广价值.
相关作者
载入中,请稍后...
相关机构
载入中,请稍后...