您的位置: 首页 > 中文期刊论文 > 详情页

基于成分引导的多模态自蒸馏食品图像分割

作   者:
侯素娟孙月娟闵巍庆王瑞平蒋树强
作者机构:
山东师范大学中国科学院计算技术研究所
关键词:
多模态食品图像图像分割自蒸馏
期刊名称:
中国食品学报
i s s n:
1009-7848
年卷期:
2024 年 24 卷 011 期
页   码:
10-21
摘   要:
目的:随着计算机视觉技术的发展,精确地识别并分割食品图像中的不同成分区域,对于食品营养分析和促进饮食健康管理至关重要。然而,当前图像分割模型多依赖于单一图像输入,这一做法在处理视觉差异较小的食品图像时,往往难以捕捉到细微的区分特征,从而影响分割精度。本文旨在解决单一模态在分割任务中的不足,利用文本信息为模型提供更加丰富的上、下文信息,采用自蒸馏技术,引导模型对食品图像的有效分割。方法:提出一种基于成分信息引导的多模态自蒸馏分割模型。该模型采用对比语言文本预训练模型(CLIP)捕捉成分信息,再与图像知识有效融合,结合扩散模型在稠密预测方面的优势,实现对食品图像的精准分割。结果:在基准数据集FoodSeg103上验证,所提模型的评估指标mIoU达到47.93%,超越了当前最优的FoodSAM模型1.51个百分点。在基准数据集UEC-FoodPIX Complete上,模型的评估指标mIoU达到75.13%,比FoodSAM模型高8.99个百分点。结论 :所提出的多模态自蒸馏网络在食品图像分割任务中表现出色,验证了成分信息对分割任务的有效指导作用,提升了分割精度,为食品图像分析提供了新的解决方案。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充