您的位置: 首页 > 中文期刊论文 > 详情页

高光谱图像特征结合光谱特征用于毛桃碰伤时间分类

作   者:
欧阳爱国刘昊辰成龙姜小刚李雄胡宣
作者机构:
华东交通大学机电与车辆工程学院水果智能光电检测技术与装备国家地方联合工程研究中心
关键词:
碰伤时间图像特征毛桃最小二乘支持向量机高光谱成像光谱特征
期刊名称:
光谱学与光谱分析
i s s n:
1000-0593
年卷期:
2021 年 41 卷 008 期
页   码:
2598-2603
摘   要:
毛桃从果树上成熟到最后到达消费者手中,中间需要经过采摘、包装、运输等一系列过程,在每一个过程中都有可能产生碰伤果.因此查看哪一个过程产生的碰伤果最多,从而对加工过程进行针对性地改进就显得尤为重要.纵观国内外高光谱技术在检测水果碰伤方面的应用,绝大多数都是忽略图像特征而只使用了光谱特征,基于图像特征结合光谱特征建模的少之又少.其次在水果碰伤时间定性判别方面,多以天数为间隔,时间间隔较大意味着水果碰伤时间越久,其变化越明显,检测准确率也就越高,目前尚缺乏有效方法对于碰伤时间较短的水果进行碰伤时间分类.以90个模拟表面碰伤的毛桃为实验样本,分别采集毛桃碰伤12,24,36和48 h后的高光谱图像.毛桃样品的光谱特征提取是采用感兴趣区域的100个像素点的平均光谱以防止单个像素点的光谱信息与整体光谱信息差距较大;通过主成分分析(PCA)对毛桃图像进行降维后选取最能体现毛桃碰伤的PC1图像,在PC1图像的权重系数曲线中波峰波谷处挑选出4个特征波长点(512,571,693和853 nm)作为特征图像,特征图像灰度化操作后计算得到平均灰度值作为毛桃碰伤图像特征.最后基于最小二乘支持向量机(LS-SVM)算法分别建立毛桃碰伤时间的光谱特征模型、图像特征模型以及图像特征结合光谱特征模型共三种判别模型,并且根据其分类准确率来判断模型的性能.结果表明:三种毛桃碰伤模型的分类准确率都随碰伤时间的增加而增加;基于径向基核函数(RBF_kernel)建立的图像特征结合光谱特征的模型预测效果最好,对碰伤12,24,36和48 h的毛桃样品识别正确率分别为83.33%,96.67%,100% 和100%,这可能是由于具有非线性特点的径向基核函数所建立的模型更加适合用于毛桃碰伤时间的分类.图像特征结合光谱特征的模型能够较好地实现对水果碰伤时间的估计,可为水果外部品质分选提供一定的参考和依据,并对水果销售和深加工企业具有一定的借鉴意义.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充