您的位置:
首页
>
中文期刊论文
>
详情页
LMUAV-YOLOv8:低空无人机视觉目标检测轻量化网络
- 作 者:
-
董一兵;
曾辉;
侯少杰;
- 作者机构:
-
河北经贸大学管理科学与信息工程学院;
- 关键词:
-
可编程梯度信息;
YOLOv8;
小目标检测;
多尺度;
轻量化;
- 期刊名称:
- 计算机工程与应用
- i s s n:
- 1002-8331
- 年卷期:
-
2025 年
61 卷
003 期
- 页 码:
- 94-110
- 摘 要:
-
针对低空无人机目标检测面临目标尺度变化大、小目标容易漏检和误检的挑战,发展了一种融合多尺度特征的目标检测轻量化网络(LMUAV-YOLOv8),通过开展消融和对比实验,验证了算法的有效性和先进性,并借助类激活图,对模型的决策过程进行了解释。设计了一种轻量化的特征融合网络(UAV_RepGFPN),提出新的特征融合路径以及特征融合模块DBB_GELAN,降低参数量和计算量的同时,提高特征融合网络的性能。使用部分卷积(PConv)和三重注意力机制(Triplet Attention)构建特征提取模块(FTA_C2f),并引入ADown下采样模块,通过对输入特征图维度的重新排列和细粒度调整,以提升模型中深层网络对空间特征的捕捉能力,并进一步降低参数量和计算量。优化YOLOv9的可编程梯度信息(programmable gradient information,PGI)策略,设计基于上下文引导(Context_guided)的可逆架构,并额外生成三个辅助检测头,提出UAV_PGI可编程梯度方法,避免传统深度监督中多路径特征集成可能导致的语义信息损失。为了验证模型的有效性及泛化能力,在VisDrone 2019测试集上开展了对比实验,结果显示,与YOLOv8s相比,LMUAV-YOLOv8s的准确度、召回率、mAP@0.5和mAP@0.5:0.95等指标分别提升了4.2、3.9、5.1和3.0个百分点,同时参数量减少了63.9%,计算量仅增加0.4 GFLOPs,实现了检测性能与资源消耗的良好平衡。基于NVIDIA Jetson Xavier NX嵌入式平台的推理实验结果显示:与基线模型相比,该算法能够在满足实时检测要求的条件下,获得更高的检测精度,对于无人机实时目标检测场景具有较好的适用性。借助类激活图,对算法的决策过程进行了可视化分析,结果表明,该模型具备更优异的小尺度特征提取和高分辨率处理能力。
相关作者
载入中,请稍后...
相关机构
载入中,请稍后...