您的位置: 首页 > 中文期刊论文 > 详情页

CAMOU-YOLO:一种迷彩伪装目标检测模型

作   者:
王烨奎曹铁勇王杨方正刘亚九郑云飞付炳阳
作者机构:
陆军工程大学指挥控制工程学院31401部队
关键词:
YOLO动态注意力目标检测迷彩伪装深度可分离卷积
期刊名称:
计算机技术与发展
i s s n:
1673-629X
年卷期:
2022 年 012 期
页   码:
摘   要:
由于迷彩伪装目标与所处背景高度融合,现有深度目标检测模型在此类目标上的检测效果并不出众。为提升对迷彩伪装目标的检测精度,以YOLOv5s模型为基础,提出了CAMOU-YOLO——一种结合深度可分离卷积和动态注意力的迷彩伪装目标检测模型。针对迷彩伪装目标特征提取难的问题,结合深度可分离卷积与残差结构设计了新的特征提取模块,并对原有骨干网络进行改进,在增强提取能力的同时,减小了模型的参数量;针对迷彩伪装目标定位难度大的问题,在聚合网络中引入动态注意力机制,强化了模型的空间感知能力,使模型对迷彩伪装目标的定位更加精准。在一种公开的迷彩数据集上进行实验,CAMOU-YOLO的mAP@0.5、mAP@0.75和mAP@0.5:0.95指标较原始模型提高了3.2%、5.1%、2.3%,在大、中、小目标上的召回率分别提高了4.1%、2.7%、1.2%,且参数量降低了9.7%;对比其他7种检测算法,CAMOU-YOLO在检测精度上亦具有优势,验证了所提模型对迷彩伪装目标检测任务的有效性。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充