您的位置: 首页 > 中文期刊论文 > 详情页

面向隐私保护的联邦域泛化行人重识别方法

作   者:
彭锦佳宋鹏鹏王辉兵
作者机构:
大连海事大学信息科学技术学院河北大学网络空间安全与计算机学院
关键词:
对齐学习数据隐私联邦学习行人重识别域泛化
期刊名称:
模式识别与人工智能
i s s n:
1003-6059
年卷期:
2023 年 36 卷 007 期
页   码:
634-646
摘   要:
行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型常常无法直接应用在另一个场景,并且从摄像头收集的数据通常包含敏感的个人信息,而现有的大部分重识别方法通常需要训练数据的集中化,这可能会带来隐私泄露问题.因此,文中提出面向隐私保护的联邦域泛化行人重识别方法(Federated Domain Generalization Person Re-identification with Privacy Preserving,PFReID),在保护行人隐私的前提下,从独立的多个非共享数据域中学习泛化模型.使用频域空间插值的方法平滑各个客户端在数据集上的域偏差,增加样本的多样性,提高各客户端模型的泛化性能.在客户端构建双分支对齐学习网络,保证客户端局部模型和全局模型学习表示的一致性,用于客户端局部模型的更新.在多个公开行人数据集上的实验验证PFReID的性能较优.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充