您的位置: 首页 > 中文期刊论文 > 详情页

基于CodeBERT和Stacking集成学习的补丁正确性验证方法

作   者:
韩威姜淑娟周伟
作者机构:
中国矿业大学计算机科学与技术学院
关键词:
集成学习Defects4J缺陷数据集自动程序修复补丁验证预训练模型
期刊名称:
计算机科学
i s s n:
1002-137X
年卷期:
2025 年 52 卷 001 期
页   码:
250-258
摘   要:
近年来,自动程序修复已成为软件工程领域的重要研究课题。然而,现有的自动修复技术大多是基于补丁生成和测试的,在补丁验证环节时间成本很高。此外,由于测试套件的不完备,许多候选补丁虽然能通过测试,但实际上并不正确,从而导致补丁过拟合。为提高补丁验证的效率并缓解补丁过拟合的问题,提出了一种静态的补丁验证方法。该方法首先使用大型预训练模型CodeBERT自动提取缺陷代码片段和补丁代码片段的语义特征,然后使用历史缺陷修复补丁数据训练Stacking集成学习模型,训练之后的模型可以对新的缺陷修复补丁进行有效验证。在Defects4J缺陷数据集相关的1 000个补丁数据上对所提方法的验证能力进行评估。实验结果表明,该方法可以有效地验证补丁的正确性,从而提高补丁验证的效率。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充