您的位置: 首页 > 中文期刊论文 > 详情页

融合案件要素的相似案例匹配

作   者:
刘权余正涛高盛祥何世柱刘康
作者机构:
昆明理工大学云南省人工智能重点实验室中国科学院自动化研究所昆明理工大学信息工程与自动化学院
关键词:
预训练语言模型相似案例匹配案件要素
期刊名称:
中文信息学报
i s s n:
1003-0077
年卷期:
2022 年 11 期
页   码:
140-147
摘   要:
相似案例匹配是智慧司法中的重要任务,其通过对比两篇案例的语义内容判别二者的相似程度,能够应用于类案检索、类案类判等。相对于普通文本,法律文书不仅篇幅更长,文本之间的区别也更微妙,传统深度匹配模型难以取得理想效果。为了解决上述问题,该文根据文书描写规律截取文书文本,并提出一种融合案件要素的方法来提高相似案件的匹配性能。具体来说,该文以民间借贷案件为应用场景,首先基于法律知识制定了6种民间借贷案件要素,利用正则表达式从法律文书中抽取案件要素,并形成词独热形式的案件要素表征;然后,对法律文本倒序截取,并通过BERT编码得到法律文本表征,解决法律文本的长距离依赖问题;接着使用线性网络融合法律文本表征与案件要素表征,并使用BiLSTM对融合的表征进行高维度化表示;最后通过孪生网络框架构建向量表征相似性矩阵,通过语义交互与向量池化进行最终的相似度判断。实验结果表明,该文模型能有效处理长文本并建模法律文本的细微差异,在CAIL2019-SCM公共数据集上优于基线模型。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充