您的位置: 首页 > 中文期刊论文 > 详情页

基于经验模态分解的锂离子电池健康状态预测

作   者:
刘征宇张政郭乐凯孟辉刘项
作者机构:
合肥工业大学机械工程学院合肥工业大学机械与汽车工程学院
关键词:
融合模型锂离子电池容量再生经验模态分解健康状态预测
期刊名称:
机械工程学报
i s s n:
0577-6686
年卷期:
2024 年 014 期
页   码:
272-281
摘   要:
电池健康状态(State of health, SOH)预测是确保电子系统运行可靠性和安全性的关键因素。为了准确地预测锂离子电池SOH的整体退化趋势和局部容量再生现象,提出一种将经验模态分解(Empiricalmodedecomposition,EMD)与门控循环单元(Gated recurrent unit, GRU)和差分自回归移动平均模型(Autoregressive integrated moving average model, ARIMA)相融合的锂离子电池SOH预测方法。首先,利用EMD将电池原始SOH序列进行多尺度分解,并通过计算分解子序列的连续均方误差找到高低频分界点;然后,GRU用于预测具有强烈数据波动的高频子序列,ARIMA用于预测剩余的低频子序列和残差;最后,将每个子序列的预测结果进行叠加以获得最终预测结果。试验结果表明,与其他文献中预测方法相比,基于经验模态分解的融合模型具有更高的预测精度,可以更好地捕捉电池SOH整体退化趋势和局部容量再生特性。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充