您的位置: 首页 > 中文期刊论文 > 详情页

基于多国实测数据的跟驰模型对比

作   者:
徐志刚魏璐颖刘志广刘张琦秦孔建
作者机构:
陕西汽车控股集团有限公司长安大学信息工程学院中汽科技(北京)有限公司
关键词:
HighD数据集微观交通流交通工程模拟退火法跟驰模型S3模型
期刊名称:
长安大学学报(自然科学版)
i s s n:
1671-8879
年卷期:
2024 年 002 期
页   码:
89-100
摘   要:
为了更精确描述车辆跟驰(CF)行为,并研究不同国家跟驰行为数据对跟驰标定模拟的影响,以及各跟驰模型对跟驰行为模拟的精确程度,选取中国西安市南二环某路段交通流CHD数据集、美国NGSIM数据集以及德国HighD数据集,针对Gazis-Herman-Rothery(GHR)模型、智能驾驶模型(IDM)以及最新被提出的S-shaped three-parameters(S3)跟驰模型进行模型标定以及误差分析,利用加速度、前后车速度差、前后车位置差和后车速度等数据作为输入参数,采用互相关分析与模拟退火相结合的方法进行数据拟合,并利用加速度、速度和位移的均方根误差(RMSE)对参数拟合后的模型进行性能评价。研究结果表明:针对3个不同国家数据集中的跟驰行为,S3微观模型标定效果均表现最佳,3个数据集的RMSE平均值均最小,且低于其他2种跟驰模型;德国HighD数据集总采集精度高、数据量大,因此无论采用何种CF模型进行标定,该数据集在跟驰行为标定方面的性能均表现最佳、误差最小。研究结果对交通仿真软件模拟交通流的车辆跟驰模型选取及其参数优化具有重要意义,且对于如何选择跟驰模型标定数据集亦具有重要价值。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充