您的位置: 首页 > 中文期刊论文 > 详情页

基于U-net++网络的弱光图像增强方法

作   者:
李华基程江华刘通程榜赵康成
作者机构:
国防科技大学电子科学学院
关键词:
弱光增强细节重建密集连接U-net++网络
期刊名称:
计算机科学
i s s n:
1002-137X
年卷期:
2021 年 48 卷 0z2 期
页   码:
278-282
摘   要:
弱光图像增强是计算机视觉中最具挑战性的任务之一,现有算法存在亮度不均、对比度低、颜色失真和噪声严重等问题.文中提出了一种基于改进U-net++网络实现更为自然的暗光增强网络框架.首先,输入弱光图像至改进U-net++网络,利用各层密集连接以增强不同层次图像特征的关联性;其次,把各层次图像特征融合后输入卷积网络层进行细节重建.实验结果证明,该方法在提高图像亮度的同时,更好地恢复了弱光图像的细节特征,并且生成正常光图像的颜色特征更接近自然.在PASCAL VOC测试集上的测试结果显示结构相似度(SSIM)和峰值信噪比(PSNR)两个重要指标分别为0.87和26.36,比同类最优算法分别高出18.6%和11.4%.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充