您的位置: 首页 > 中文期刊论文 > 详情页

基于Inception-CSA深度学习模型的鸟鸣分类

作   者:
李怀城杨道武温治芳王亚楠陈爱斌
作者机构:
中南林业科技大学计算机与信息工程学院/人工智能应用研究所
关键词:
鸟鸣声分类卷积神经网络深度学习梅尔频谱图Inception
期刊名称:
华中农业大学学报
i s s n:
1000-2421
年卷期:
2023 年 42 卷 003 期
页   码:
97-104
摘   要:
为进一步提高通过声音识别鸟类的精确度,本研究提出基于Inception-CSA深度学习模型的鸟鸣声分类方法,包含鸟鸣声音频样本预处理、特征提取、分类器分类等步骤.首先将鸟鸣声样本预处理成尺寸相同的梅尔频谱图,作为鸟鸣声特征图;其次利用Inception-CSA模型对鸟鸣声特征图进行特征提取,其中Inception模块提取鸟鸣声特征图中的多尺度局部时频域特征,CSA模块获取鸟鸣声特征图的全局注意力权重,将二者的输出结合得到更强的特征图,再次利用最大池化层对特征图进行下采样;最后利用全连接层进行分类,得到最终的分类结果.以采集的华南地区自然环境中的10种野生鸟类的鸣叫声构建数据集,用于实验部分以验证方法的有效性.结果表明,本研究提出的方法在自建数据集上准确率达到了93.11%,相比于基于其他经典模型的分类方法,基于Inception-CSA模型的分类方法在拥有较少模型参数量的同时达到了更高的准确率.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充