您的位置: 首页 > 中文期刊论文 > 详情页

改进YOLOv7-Tiny的X射线安检违禁品检测

作   者:
叶亚林谢连军高丙朋吕利俊
作者机构:
新疆大学电气工程学院
关键词:
特征提取深度学习违禁品检测模型轻量化
期刊名称:
科学技术与工程
i s s n:
1671-1815
年卷期:
2024 年 24 卷 026 期
页   码:
11349-11357
摘   要:
针对X射线安检场景中违禁品目标检测精度低,检测模型过于复杂的问题,在YOLOv7-Tiny模型的基础上,提出了一种新的轻量化检测方法.首先在骨干网络中融合改进的轻量化模块GhostNetV2,在减少模型参数的同时,提高训练效率;其次在YOLOv7-Tiny的颈部网络部分加入金字塔拆分注意力机制,有效解决参数减少导致的提取特征不足问题,提高背景复杂以及多尺度目标回归的准确性;最后,通过使用归一化 Wasserstein距离方法来度量损失,替代了原有的Intersection over Union度量,降低了小目标位置偏差的敏感性,增强了小目标的回归准确性.实验结果表明,改进模型在SIXray、CLCXray和OPIXray数据集上平均检测精度达到92.9%、76.2%和91.2%,相比原始算法分别提升了 6.5%、2%和1.8%;所提出模型在轻量化的同时能够进一步提高检测能力,可以满足实时检测要求,具有较好的应用价值.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充