您的位置: 首页 > 中文期刊论文 > 详情页

改进YOLOv3网络模型的人体异常行为检测方法

作   者:
张红民李萍萍房晓冰刘宏
作者机构:
中国科学院计算技术研究所重庆理工大学电气与电子工程学院
关键词:
注意力机制异常行为神经网络多尺度残差网络
期刊名称:
计算机科学
i s s n:
1002-137X
年卷期:
2022 年 49 卷 004 期
页   码:
233-238
摘   要:
针对传统视频监控数据量大且复杂、不能及时有效地检测到人体异常行为的问题,文中提出了一种基于YOLOv3改进网络模型的人体异常行为检测方法(YOLOv3-MSSE).该方法基于经典YOLOv3网络模型,利用残差模块构建多尺度特征提取网络,提升了对大目标的检测精度;同时,在网络结构不同位置融入注意力机制,对特征图各个通道的特征重要性实现加权处理,有效提高了模型人体异常行为的检测性能.实验结果表明,相比传统YOLOv3算法,YOLOv3-MSSE方法的mAP值提升了20.8%,F1-scores提升了11.3%,该方法不仅能够有效地检测出监控场景中的人体特定异常行为,还能较好地平衡检测精确率与召回率之间的关系,比同类方法更适用于实际监控场景下的人体异常行为检测.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充