您的位置: 首页 > 中文期刊论文 > 详情页

基于无人机视觉的起重机表面裂纹检测方法

作   者:
周前飞丁树庆冯月贵庆光蔚胡静波
作者机构:
南京市特种设备安全监督检验研究院
关键词:
深度神经网络表面裂纹无人机视觉图像识别
期刊名称:
测控技术
i s s n:
1000-8829
年卷期:
2022 年 41 卷 004 期
页   码:
28-34,75
摘   要:
为解决起重机高空金属结构不可达部位裂纹的远程可视化检测难题,提出一种基于无人机视觉的结构表面裂纹检测与识别方法.通过搭载高分辨率可见光相机的倒置式无人机检测平台,全方位采集大型起重机复杂钢结构表面图像;采用Faster R-CNN深度神经网络算法分类检测是否有裂纹缺陷,并以缺陷最小外接矩形框标记其位置;对检测出的裂纹目标框区域,利用最大熵阈值分割、Canny边缘检测、投影特征提取和骨架提取等方法,对裂纹长度、宽度、面积、长宽比等参数进行识别,并为长宽比和面积设置一定阈值,去除漆膜开裂和水渍等伪裂纹缺陷.实验结果表明,Faster R-CNN裂纹检测算法准确率达到95.4%,速度达到2 f/s,同时裂纹宽度识别误差约为5.84%,实现了起重机结构表面疲劳裂纹的远程自动化检测.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充