您的位置: 首页 > 中文期刊论文 > 详情页

基于维基百科社区挖掘的词语语义相似度计算

作   者:
彭丽针吴扬扬
作者机构:
华侨大学计算机科学与技术学院
关键词:
维基百科语义相似度社区发现
期刊名称:
计算机科学
基金项目:
i s s n:
1002-137X
年卷期:
2016 年 43 卷 04 期
页   码:
45-49
摘   要:
词语语义相似度计算在自然语言处理如词义消歧、语义信息检索、文本自动分类中有着广泛的应用。不同于传统的方法,提出的是一种基于维基百科社区挖掘的词语语义相似度计算方法。本方法不考虑单词页面文本内容,而是利用维基百科庞大的带有类别标签的单词页面网信息,将基于主题的社区发现算法HITS应用到该页面网,获取单词页面的社区。在获取社区的基础上,从3个方面来考虑两个单词间的语义相似度:(1)单词页面语义关系;(2)单词页面社区语义关系;(3)单词页面社区所属类别的语义关系。最后,在标准数据集WordSimilarity-353上的实验结果显示,该算法具有可行性且略优于目前的一些经典算法;在最好的情况下,其Spearman相关系数达到0.58。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充