您的位置: 首页 > 中文期刊论文 > 详情页

天然苦味分子识别及苦味阈值预测模型

作   者:
冯宝龙任海斌段佳慧张厚森温春辉白晓森高飞王玉堂
作者机构:
乳品科学教育部重点实验室(东北农业大学)东北农业大学网络教育学院东北农业大学食品学院
关键词:
苦味化合物识别预测阈值验证
期刊名称:
食品工业科技
i s s n:
1002-0306
年卷期:
2022 年 43 卷 004 期
页   码:
24-32
摘   要:
鉴定天然化合物中苦味物质和确定其苦味阈值对于食物中苦味分子的发掘和利用至关重要.基于构效关系识别苦味分子及预测苦味分子阈值是一种低成本快速的方法.本研究利用分子操作环境(Molecular Operating Environment,MOE)、Chemopy和Mordred生成2D描述符,利用支持向量机(Support Vector Machine,SVM)、随机森林(Random Forests,RF)算法建立苦味分子识别模型,利用偏最小二乘回归(Partial Least Squares Regression,PLSR)、随机森林回归(Random Forests Regression,RFR)、k-最近邻回归(k-Nearest Neighbor Regression,kNNR)、主成分回归(Principle Component Regression,PCR)算法建立苦味阈值预测模型.结果 表明:MOE-RF模型能够较好地识别分子是否具有苦味,准确度为0.982;ChemoPy-PLSR模型的苦味阈值预测效果最好,决定系数为0.85,误差均方根为0.43,可将这两个模型联合使用来预测分子是否具有苦味及苦味阈值.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充