您的位置: 首页 > 中文期刊论文 > 详情页

基于PINet+RESA网络的车道线检测算法

作   者:
范英石磊苏伟伟闫浩
作者机构:
太原科技大学车辆与交通工程学院
关键词:
卷积神经网络语义分割深度学习CULane数据集PINet车道线检测
期刊名称:
江苏大学学报(自然科学版)
i s s n:
1671-7775
年卷期:
2023 年 44 卷 004 期
页   码:
373-378
摘   要:
实例点网络(point instance network,PINet)在物体遮挡、光照变化和阴影干扰等场景中检测准确性高,但实时性表现不佳.在保证PINet模型精度的前提下,为提升网络的推理速度,提出一种结合循环特征移位聚合器(recurrent feature-shift aggregator,RESA)算法的车道线检测模型.通过算力分析,只采用1个瓶颈网络(bottle-neck)作为预测网络(predicting network),目的是为了去除冗余的多尺度操作,以加快模型的推理速度.为了弥补模块剪枝造成的精度下降,引入了 RESA模块以捕获图像中跨行、列的空间信息,增强骨干网络提取到的车道线特征.将改进后的模型在Tusim-ple、CULane、Custom数据集上进行测试.结果表明:改进后的网络模型在物体遮挡、光照变化、阴影干扰等多种复杂场景下表现突出,对车道分割准确率、实时处理速度有大幅改善,检测识别效果优于传统PINet网络算法,除F1指标提升较小外,推理速度在3个数据集下分别提升20.3%、52.9%及13.9%.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充