您的位置: 首页 > 中文期刊论文 > 详情页

基于LSTM和新闻情感的股票价格预测方法

作   者:
许丽张利李桂城肖一凡陈丽绵唐艳
作者机构:
贵州大学大数据与信息工程学院
关键词:
LSTM股票价格预测XGBoost交叉验证SVM新闻情感预测
期刊名称:
智能计算机与应用
i s s n:
2095-2163
年卷期:
2022 年 12 卷 005 期
页   码:
107-113
摘   要:
股票预测研究对于经济发展具有重要意义,也是困扰投资者的难题.本文提出了一种基于LSTM和新闻股票情感分析的组合优化模型SVM_LSTM.首先将XGBoost和利用交叉验证优化的LSTM应用于预测中国银行、中国联通以及浦发银行的每日收盘价上,通过对比二者的性能,选择较优的LSTM对中国银行股票历史价格进行最终的时序预测;然后,使用SVM对中国银行的股票新闻进行情感倾向预测;最后,采用加权的方式将SVM的预测结果与LSTM的预测的结果进行融合.实验结果表明:第一,利用交叉验证优化的LSTM较XGBoost具有更优的评价指标,针对中国银行数据集,其RSEM、MAE、MSE比XGBoost分别减少了0.234、0.173、0.011;第二,采用加权的方式将SVM_LSTM的预测结果调和,实验结果较原LSTM而言,评价指标RSEM、MAE、MSE分别减少了7.5%、6.4%、10.8%.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充