您的位置: 首页 > 中文期刊论文 > 详情页

基于改进Swin Transformer的中心点目标检测算法

作   者:
刘家森黄俊
作者机构:
重庆邮电大学通信与信息工程学院
关键词:
反卷积图像处理深度学习目标检测Swin Transformer
期刊名称:
计算机科学
i s s n:
1002-137X
年卷期:
2024 年 006 期
页   码:
264-271
摘   要:
针对Swin Transformer在提取局部特征信息和特征表达能力上存在的不足,提出了一种基于改进Swin Transformer的中心点目标检测算法,以提高其在目标检测方面的性能。通过调整网络结构和引入反卷积模块来增强网络对局部特征信息的提取能力,利用自适应二维高斯核和回归头模块检测目标中心点来增强特征表达能力,并在Swin Transformer block模块中加入dropout激活函数,以缓解网络过拟合问题。在Pascal VOC和MS COCO 2017数据集上分别对改进后的算法进行验证,实验结果表明,改进后的Swin Transformer算法在Pascal VOC数据集上的精确度达到了81.1%,在MS COCO数据集上的精确度达到了37.2%,明显优于其他主流目标检测算法。
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充