您的位置: 首页 > 外文期刊论文 > 详情页

A Blueberry ( Vaccinium L.) Crop Ontology to Enable Standardized Phenotyping for Blueberry Breeding and Research

作   者:
Hislop, Lillian M.Luby, Claire H.Loarca, JenyneHumann, JodiHummer, Kim E.Bassil, NahlaZhao, DongyanCasa, Alexandra M.Billings, Grant T.Echeverria, Daniella M.Ashrafi, HudsonBabiker, EbrahiemEdger, PatrickHancock, JimEhlenfeldt, Mark K.Finn, ChadIorizzo, MassimoSheehan, Moira J.Mackey, TedMunoz, Patricio R.Olmstead, JamesRowland, Lisa J.Sandefur, PaulSpencer, Jessica A.Stringer, StephenVorsa, NicholiWagner, AdamHulse-Kemp, Amanda M.
作者机构:
Univ Wisconsin MadisonDriscolls IncWashington State UnivUniv FloridaNorth Carolina State UnivMichigan State UnivUSDA ARSRutgers State UnivOregon State UnivOregon BlueberryCornell UnivFall Creek Farm & Nursery Inc
关键词:
phenotypedatabasecontrolled vocabularyVITIS-IDAEAMACROCARPONGENEStrait ontologyplant ontologyINTERSECTIONAL HYBRIDSHIGHBUSH BLUEBERRY
期刊名称:
HortScience
i s s n:
0018-5345
年卷期:
2024 年 59 卷 10 期
页   码:
1433-1442
页   码:
摘   要:
Breeding programs around the world continually collect data on large numbers of individuals. To be able to combine data collected across regions, years, and experiments, research communities develop standard operating procedures for data collection and measurement. One such method is a crop ontology, or a standardized vocabulary for collecting data on commonly measured traits. The ontology is also computer readable to facilitate the use of data management systems such as databases. Blueberry breeders and researchers across the United States have come together to develop the fi rst standardized crop ontology in blueberry (Vaccinium spp.). We provide an overview and report on the construction of the fi rst blueberry crop ontology and the 178 traits and methods included within. Researchers of Vaccinium species-such - such as other blueberry species, cranberry, lingonberry, and bilberry- - can use the described crop ontology to collect phenotypic data of greater quality and consistency, interoperability, and computer readability. Crop ontologies, as a shared data language, benefit fi t the entire worldwide research community by enabling collaborative meta-analyses that can be used with genomic data for quantitative trait loci, genome-wide association studies, and genomic selection analysis.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充