您的位置: 首页 > 外文期刊论文 > 详情页

Hyperfine interactions for small systems including transition-metal elements using self-interaction corrected density-functional theory

作   者:
Karanovich, AnriJackson, Koblar AlanPark, Kyungwha
作者机构:
Virginia TechCent Michigan Univ
关键词:
ELECTRON-SPIN-RESONANCEACCURATEAPPROXIMATIONESR-SPECTRAEPRPERFORMANCECORRELATION-ENERGYEXCHANGECOUPLING-CONSTANTSMOLECULES
期刊名称:
The Journal of Chemical Physics
i s s n:
0021-9606
年卷期:
2024 年 161 卷 1 期
页   码:
ARTN 014102-
页   码:
摘   要:
The interactions between the electronic magnetic moment and the nuclear spin moment, i.e., magnetic hyperfine (HF) interactions, play an important role in understanding electronic properties of magnetic systems and in realizing platforms for quantum information science applications. We investigate the HF interactions for atomic systems and small molecules, including Ti or Mn, by using Fermi-L & ouml;wdin orbital (FLO) based self-interaction corrected (SIC) density-functional theory. We calculate the Fermi contact (FC) and spin-dipole terms for the systems within the local density approximation (LDA) in the FLO-SIC method and compare them with the corresponding values without SIC within the LDA and generalized-gradient approximation (GGA), as well as experimental data. For the moderately heavy atomic systems (atomic number Z <= 25), we find that the mean absolute error of the FLO-SIC FC term is about 27 MHz (percentage error is 6.4%), while that of the LDA and GGA results is almost double that. Therefore, in this case, the FLO-SIC results are in better agreement with the experimental data. For the non-transition-metal molecules, the FLO-SIC FC term has the mean absolute error of 68 MHz, which is comparable to both the LDA and GGA results without SIC. For the seven transition-metal-based molecules, the FLO-SIC mean absolute error is 59 MHz, whereas the corresponding LDA and GGA errors are 101 and 82 MHz, respectively. Therefore, for the transition-metal-based molecules, the FLO-SIC FC term agrees better with experiment than the LDA and GGA results. We observe that the FC term from the FLO-SIC calculation is not necessarily larger than that from the LDA or GGA for all the considered systems due to the core spin polarization, in contrast to the expectation that SIC would increase the spin density near atomic nuclei, leading to larger FC terms.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充