您的位置: 首页 > 外文期刊论文 > 详情页

StaTDS library: Statistical tests for Data Science

作   者:
Christian LunaAntonio R. MoyaJose Maria LunaSebastian Ventura
作者机构:
14071 University of Cordoba SpainDepartment of Computing and Numerical Analysis Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) Cordoba
关键词:
Statistical testsData science comparisonPython
期刊名称:
Neurocomputing
i s s n:
0925-2312
年卷期:
2024 年 595 卷 Aug.28 期
页   码:
127877.1-127877.4
页   码:
摘   要:
In Data Science, there is a continual demand for statistical comparison to identify the most advantageous algorithms. Finding a software tool that facilitates the execution of multiple tests on different Data Science experiments without relying on additional libraries poses a challenge. This paper introduces StaTDS, an open-source library and web application implemented entirely in pure Python, designed to analyze, test, and compare Data Science algorithms. StaTDS implements all statistical tests without external dependencies. It ensures its durability and avoids future uncontrolled deprecated dependencies. With support for a wide variety of statistical tests (24 in total), StaTDS surpasses existing libraries dedicated to statistical testing. Moreover, the library incorporates tests to guide users in determining whether to employ parametric or non-parametric tests, such as the assessment of normality and homoscedasticity. This platform-independent library is available on GitHub under the GNU General Public License.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充