Journal of Materials Chemistry, A. materials for energy and sustainability
i s s n:
2050-7488
年卷期:
2024 年
12 卷
11 期
页 码:
6733-6746
页 码:
摘 要:
As a technology that can not only address water pollution but also generate ammonia, electrocatalytic reduction of nitrate (NO3RR) to ammonia has seen a new upsurge in recent years. Herein, through first-principles high-throughput screening, we discovered that g-C3N4-based dual-atom catalysts (M1M2/g-C3N4, M1 = M2 = Ti, V, Cr, Mn, Fe, Co, Ni, Cu) exhibit extraordinary NO3RR catalytic performance. The multilevel descriptor elucidates the origin of the NO3RR reaction and facilitates rapid screening of candidate materials. The results indicate that TiFe/g-C3N4 possesses the best performance (UL = − 0.21 eV) among the 36 M1M2/g-C3N4 catalysts evaluated. Impressively, TiFe/g-C3N4 dual-atom catalysts differ from single-atom catalysts in that they follow a distinct dissociation–association reaction mechanism. Further orbital analysis signifies that this behavior arises from the synergistic effect of dual-atom metals. By establishing the correlation between structure and performance, our predictions contribute to the advancement of NO3RR as a method of ammonia production. This study holds promise for addressing water pollution while simultaneously harnessing renewable resources.