Comparative study on the enzymatic degradation of phenolic esters: The HPLC-UV quantification of tyrosol and gallic acid liberated from tyrosol acyl esters and alkyl gallates by hydrolytic enzymes
Dalian 116034;
School of Food Science and Technology;
SKL of Marine Food Processing & Safety Control;
School of Food and Biological Engineering;
Hefei University of Technology;
People's Republic of China;
Liaoning Province Key Laboratory for Marine Food Science and Technology;
Hefei 230601;
National Engineering Research Center of Seafood;
Collaborative Innovation Center of Seafood Deep Processing;
Dalian Polytechnic University;
HPLC-UV analysis was used to evaluate the enzymatic degradation characteristics of tyrosol acyl esters (TYr-Es) and alkyl gallates (A-GAs). Among various hydrolytic enzymes, TYr-Es can be hydrolyzed by pancrelipase, while A-GAs cannot be hydrolyzed by pancrelipase. Interestingly, carboxylesterase-1b (CES-1b), carboxylesterase-1c (CES-1c) and carboxylesterase-2 (CES-2) are able to hydrolyze TYr-Es and A-GAs, and thus to liberate tyrosol (TYr) and gallic acid (GA). By contrast, the degrees of hydrolysis (DHs) of TYr-Es and A-GAs by CES-1b and CES-1c were significantly higher than those by CES-2. Meanwhile, the DHs of TYr-Es were much higher than those of A-GAs. Especially, the DHs firstly increased and then decreased with the increasing alkyl chain length. Besides, DHs positively correlated with the unsaturation degree at the same chain length. Through regulating carbon length, unsaturation degree and the ester bond structure, controlled-release of phenolic compounds and fatty acids (or fatty alcohols) from phenolic esters will be easily achieved.