您的位置: 首页 > 外文期刊论文 > 详情页

The SLC8 gene family of sodium-calcium exchangers (NCX)-Structure, function, and regulation in health and disease

作   者:
Khananshvili,D.
作者机构:
Department of Physiology and Pharmacology Tel-Aviv University Sackler School of Medicine Ramat
关键词:
NCXExpressionIsoformsSLC8RegulationSplice variants
期刊名称:
Molecular Aspects of Medicine: An Interdisciplinary Review Journal
i s s n:
0098-2997
年卷期:
2013 年 34 卷 2/3 期
页   码:
220-235
页   码:
摘   要:
The SLC8 gene family encoding Na+/Ca2+ exchangers (NCX) belongs to the CaCA (Ca2+/Cation Antiporter) superfamily. Three mammalian genes (SLC8A1, SLC8A2, and SLC8A3) and their splice variants are expressed in a tissue-specific manner to mediate Ca2+-fluxes across the cell-membrane and thus, significantly contribute to regulation of Ca 2+-dependent events in many cell types. A long-wanted mitochondrial Na+/Ca2+ exchanger has been recently identified as NCLX protein, representing a gene product of SLC8B1. Distinct NCX isoform/splice variants contribute to excitation-contraction coupling, long-term potentiation of the brain and learning, blood pressure regulation, immune response, neurotransmitter and insulin secretion, mitochondrial bioenergetics, etc. Altered expression and regulation of NCX proteins contribute to distorted Ca2+-homeostasis in heart failure, arrhythmia, cerebral ischemia, hypertension, diabetes, renal Ca2+ reabsorption, muscle dystrophy, etc. Recently, high-resolution X-ray structures of Ca2+-binding regulatory domains of eukaryotic NCX and of full-size prokaryotic NCX have become available and the dynamic properties have been analyzed by advanced biophysical approaches. Molecular silencing/overexpression of NCX in cellular systems and organ-specific KO mouse models provided useful information on the contribution of distinct NCX variants to cellular and systemic functions under various pathophysiological conditions. Selective inhibition or activation of predefined NCX variants in specific diseases might have clinical relevance, although this breakthrough has not yet been realized. A better understanding of the underlying molecular mechanisms as well as the development of in vitro procedures for high-throughput screening of "drug-like" compounds may lead to selective pharmacological targeting of NCX variants.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充