您的位置: 首页 > 外文期刊论文 > 详情页

基于乳腺超声视频流和自监督对比学习的肿瘤良恶性分类系统

作   者:
唐蕴芯廖梅张艳玲张建陈皓王炜
作者机构:
南京大学物理学院杭州精康科技中山大学附属第三医院
关键词:
自监督学习乳腺超声深度学习对比学习预训练模型三胞胎网络
期刊名称:
南京大学学报(自然科学)
i s s n:
0469-5097
年卷期:
2024 年 60 卷 001 期
页   码:
26-37
摘   要:
乳腺超声广泛应用于乳腺肿瘤诊断,基于深度学习的肿瘤良恶性分类模型可以有效地辅助医生诊断,提高效率,降低误诊率,然而,由于标注数据的高成本问题,限制了此类模型的开发和应用.为此,从乳腺超声视频中构建了无标注预训练数据集,包含11805个目标样本数据和动态生成的正、负样本数据集(样本量分别为188880和1310355个).基于该数据集,搭建了三胞胎网络并进行了自监督对比学习.此外,还发展了 Hard Negative Mining和Hard Positive Mining方法来选取困难的正负样本构建对比损失函数,加快模型收敛.参数迁移后,将三胞胎网络在SYU数据集上进行微调和测试.实验结果表明,与基于ImageNet预训练的若干SOTA模型以及与前人针对乳腺超声的多视图对比模型相比,提出的三胞胎网络模型具有更强的泛化能力和更好的分类性能.此外,还测试了模型对标注数据量的需求下限,发现仅使用96个标注数据,模型性能即可达到AUC=0.901,敏感度为0.835.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充