您的位置: 首页 > 外文期刊论文 > 详情页

The selenoproteome of Clostridium sp. OhILAs: characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A.

作   者:
Kim HYZhang YLee BCKim JRGladyshev VN
作者机构:
Department of Biochemistry and Molecular Biology Aging-associated Vascular Disease Research Center Yeungnam University College of Medicine Daegu 705-717 Republic of Korea. hykim@ynu.ac.kr
关键词:
ClostridiumCysteinemethionine sulfoxide reductase梭菌属半胱氨酸selenoproteins
期刊名称:
Proteins: Structure, Function, and Genetics
i s s n:
0887-3585
年卷期:
2009 年 74 卷 4 期
页   码:
1008-1017
页   码:
摘   要:
Selenocysteine (Sec) is incorporated into proteins in response to UGA codons. This residue is frequently found at the catalytic sites of oxidoreductases. In this study, we characterized the selenoproteome of an anaerobic bacterium, Clostridium sp. (also known as Alkaliphilus oremlandii) OhILA, and identified 13 selenoprotein genes, five of which have not been previously described. One of the detected selenoproteins was methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that repairs oxidatively damaged methionines in a stereospecific manner. To date, little is known about MsrA from anaerobes. We characterized this selenoprotein MsrA which had a single Sec residue at the catalytic site but no cysteine (Cys) residues in the protein sequence. Its SECIS (Sec insertion sequence) element did not resemble those in Escherichia coli. Although with low translational efficiency, the expression of the Clostridium selenoprotein msrA gene in E. coli could be demonstrated by (75)Se metabolic labeling, immunoblot analyses, and enzyme assays, indicating that its SECIS element was recognized by the E. coli Sec insertion machinery. We found that the Sec-containing MsrA exhibited at least a 20-fold higher activity than its Cys mutant form, indicating a critical role of Sec in the catalytic activity of the enzyme. Furthermore, our data revealed that the Clostridium MsrA was inefficiently reducible by thioredoxin, which is a typical reducing agent for MsrA, suggesting the use of alternative electron donors in this anaerobic bacterium that directly act on the selenenic acid intermediate and do not require resolving Cys residues.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充