您的位置: 首页 > 外文期刊论文 > 详情页

Permeability of postzygotic barriers: embryology of a partially fertile Epidendrum (Orchidaceae) hybrid

作   者:
Alves, M. F.Pinheiro, F.Graciano, D. da SilvaDe Toni, K. L. G.Baumgratz, J. F. A.
作者机构:
State University of Campinas Department of Plant Biology
关键词:
microsporogenesismicrogametogenesismegagametogenesisreproductive isolationHybridizationmegasporogenesis
期刊名称:
Plant biology
i s s n:
1435-8603
年卷期:
2025 年 27 卷 1 期
页   码:
40-51
页   码:
摘   要:
Hybrid zones offer unique insight into reproductive barriers and plant speciation mechanisms. This study investigated postzygotic reproductive isolation in the natural hybrid Epidendrum x purpureum, which occurs in sympatry with its parent species, Epidendrum denticulatum and E. orchidiflorum. We examined the development of male and female gametophytes and the events leading to seed formation in this hybrid zone. Floral buds and flowers from E. x purpureum individuals were collected at various stages of development. Both self-pollination and backcrosses between hybrids and parental species were performed to follow ovule and seed development up to 60 days after pollination. The material was analysed using optical and confocal microscopy. In most hybrids, microsporogenesis and microgametogenesis occur regularly, forming viable male gametophytes. Non-viable male gametophytes were also observed and are the result of symmetrical mitotic division. The development of the female gametophyte occurs after self-pollination, and proceeds regularly, resulting in a reduced female gametophyte. Embryo development in the parental species occurs without abnormalities, while in backcrosses between hybrids and parental species, most embryos degenerate. Embryo degeneration in the crosses between hybrids can be explained by genetic incompatibilities. The co-occurrence of viable embryos and degenerating embryos in backcrosses between hybrids and parental species point to incomplete postzygotic reproductive barriers between the hybrid and the progenitors. Our findings suggest that E. x purpureum could facilitate gene flow between parental species, as much of its embryological development occurs without abnormalities.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充