Quantum chaotic maps can efficiently generate pseudorandom states carrying almost maximal multipartite entanglement, as characterized by the probability distribution of bipartite entanglement between all possible bipartitions of the system. We show that such multipartite entanglement is robust, in the sense that, when realistic noise is considered, distillable entanglement of bipartitions remains almost maximal up to a noise strength that drops only polynomially with the number of qubits.