您的位置: 首页 > 外文期刊论文 > 详情页

Smoothness adaptive average derivative estimation

作   者:
Marcia M. A. SchafgansVictoria Zinde-Walsh
作者机构:
Department of Economics C.P. 6128 Canada CIREQ London School of Economics. Houghton Street Succursale Centre-ville London WC2A 2AE Canada Universite de Montreal McGill University Montreal QC H3A 2T7 H3C 3J7 UK 805 rue Sherbrooke ouest Montreal (Quebec)
关键词:
density weighted average derivative estimatornon-parametric estimation
期刊名称:
The econometrics journal
i s s n:
1368-4221
年卷期:
2010 年 13 卷 1 期
页   码:
40-62
页   码:
摘   要:
Many important models utilize estimation of average derivatives of the conditional mean function. Asymptotic results in the literature on density weighted average derivative estimators (ADE) focus on convergence at parametric rates; this requires making stringent assumptions on smoothness of the underlying density; here we derive asymptotic properties under relaxed smoothness assumptions. We adapt to the unknown smoothness in the model by consistently estimating the optimal bandwidth rate and using linear combinations of ADE estimators for different kernels and bandwidths. Linear combinations of estimators (i) can have smaller asymptotic mean squared error (AMSE) than an estimator with an optimal bandwidth and (ii) when based on estimated optimal rate bandwidth can adapt to unknown smoothness and achieve rate optimality. Our combined estimator minimizes the trace of estimated MSE of linear combinations. Monte Carlo results for ADE confirm good performance of the combined estimator.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充