您的位置: 首页 > 外文期刊论文 > 详情页

Intelligent optimal control of robotic manipulators using neural networks

作   者:
Young H. KimFrank L. LewisDarren M. Dawson
关键词:
Robotic manipulatorsNeural networksOptimal controlClosed-loop control
期刊名称:
Automatica
i s s n:
0005-1098
年卷期:
2000 年 36 卷 9 期
页   码:
1355-1364
页   码:
摘   要:
The paper is concerned with the application of quadratic optimization for motion control to feedback control of robotic systems using neural networks. Explicit solutions to the Hamilton-Jacobi-Bellman (H-J-B) equation for optimal control of robotic systems ire found by solving an algebraic Riccati equation. It is shown how neural networks can cope with nonlinearities through optimization with no preliminary off-line learning phase required. The adaptive learning algorithm is derived from Lyapunov stability analysis, so that both system tracking stability and error convergence can be guaranteed in the closed-loop system. The filtered racking error or critic gain and the Lyapunov function for the nonlinear analysis are derived from the user input in terms of specified quadratic performance index. Simulation results on a two-link robot manipulator show the satisfactory performance of the proposed control schemes even in the presence of large modeling uncertainties and external disturbances.
相关作者
载入中,请稍后...
相关机构
    载入中,请稍后...
应用推荐

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充