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Differential selection of yield and quality 
traits has shaped genomic signatures of 
cowpea domestication and improvement

Xinyi Wu1,7, Zhongyuan Hu    2,7, Yan Zhang3, Mao Li1,4, Nanqiao Liao2, 
Junyang Dong1,4, Baogen Wang1,4, Jian Wu1,4, Xiaohua Wu1,4, Ying Wang1,4, 
Jian Wang1,4, Zhongfu Lu1,4, Yi Yang3, Yuyan Sun1,4, Wenqi Dong1,4, 
Mingfang Zhang    2,5,6  & Guojing Li    1,4 

Cowpeas (tropical legumes) are important in ensuring food and nutritional 
security in developing countries, especially in sub-Saharan Africa. Herein, 
we report two high-quality genome assemblies of grain and vegetable 
cowpeas and we re-sequenced 344 accessions to characterize the genomic 
variations landscape. We identified 39 loci for ten important agronomic 
traits and more than 541 potential loci that underwent selection during 
cowpea domestication and improvement. In particular, the synchronous 
selections of the pod-shattering loci and their neighboring stress-relevant 
loci probably led to the enhancement of pod-shattering resistance and 
the compromise of stress resistance during the domestication from grain 
to vegetable cowpeas. Moreover, differential selections on multiple loci 
associated with pod length, grain number per pod, seed weight, pod 
and seed soluble sugars, and seed crude proteins shaped the yield and 
quality diversity in cowpeas. Our findings provide genomic insights into 
cowpea domestication and improvement footprints, enabling further 
genome-informed cultivar improvement of cowpeas.

Legumes are crops with a high potential to provide balanced nutri-
tion to the human diet and sustain food and nutritional security in 
developing regions, particularly in African countries. Cowpea (Vigna 
unguiculata L. Walp., 2n = 2x = 22), which is endemic to sub-Saharan 
Africa, is cultivated as a grain, vegetable or livestock feed worldwide1, 
and the wild subspecies V. unguiculata ssp. dekindtiana var. spontanea 
is considered its progenitor2–4. The domesticated cowpea has formed 

two major subspecies: the grain cowpea (V. unguiculata L. Walp. ssp. 
unguiculata) in Africa and the vegetable or garden cowpea (V. unguicu-
lata L. Walp. ssp. sesquipedalis) in Asia. Global annual production of 
grain cowpeas is ∼8.9 million tonnes, 85% of which is produced in West 
Africa (FAOSTAT, 2020; https://www.fao.org/faostat/en/#data/QCL). 
This subspecies provides an excellent source of starch, dietary pro-
tein, fiber and micronutrients in developing countries as an important 
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Table 12), of which the transposable elements content was 44.56% 
in G98 and 44.57% in G323. Class I retrotransposons were the most 
abundant transposable elements in both genomes, of which the Gypsy 
long-terminal repeat retrotransposons (LTRs) were the leading type in 
the G98 (17.19%) and G323 (18.72%) genomes. Class II DNA transposons 
comprised 9.49% and 8.82% of the G98 and G323 genomes, respectively. 
Among them, hAT was the major transposon (Supplementary Table 12).

Phylogenomic relationships and SVs
A maximum-likelihood phylogenetic tree of 25 plant genomes revealed 
that the cowpea is closely related to the adzuki bean (V. angularis) 
and mung bean (V. radiata) and that they apparently diverged about  
6–27 million years ago (Fig. 2a and Supplementary Table 13), which 
is consistent with previous reports19,20. Moreover, 512 and 396 gene 
families displayed significant expansions in the G98 and G323 genomes. 
The expanded genes in G98 were significantly enriched in the gly-
cosphingolipid metabolism pathway, which is involved in membrane 
organization21–23. As pod elongation is largely caused by cell division24,25, 
these expanded genes possibly contribute to the longer pods in the 
vegetable cowpea. Conversely, the expanded genes in G323 were sig-
nificantly enriched in energy production and conversion pathways 
such as amino sugar and nucleotide sugar metabolism, glucosinolate 
gamma-glutamyl hydrolase and galactose metabolism (Fig. 2b,c and 
Supplementary Table 14), which might relate to the higher carbohydrate 
accumulation and defense response in the grain cowpea.

We also performed a comparative genome analysis on the two 
genomes using G323 as a reference. A total of 2,219,947 single nucleo-
tide polymorphisms (SNPs) were identified in the G98 genome, of 
which 38,420 SNPs may cause changes in gene functions (Supplemen-
tary Table 15). Meanwhile, a total of 407,119 insertions and deletions 
(InDels; 2–49 bp) were identified in G98, 62.50% of which could cause 
protein encoding alterations (Supplementary Table 16). In addition, 
13,541 SVs (≥50 bp) were identified in G98, including 963 translocation 
variations (TRANS), 74 inversion variations (INVs) and 3,701 duplica-
tions (DUPs), 7,112 presence–absence variations (PAVs; ≥50 bp) and 
1,691 gene copy number variations (CNVs) (Supplementary Table 17).

Notably, we found five large SV regions (>1 Mb) (Fig. 2d–f). Chro-
mosome 1 contained a 7.5 Mb INV (Chr01: 20,118,943 ~ 27,655,522) and 
multiple adjacent TRANS (Chr01: 39,164,314 ~ 40,968,319), which har-
bors 61 and 31 genes, respectively (Fig. 2d). Chromosome 6 contained 
a 4.73 Mb INV region (Chr06: 42,392 ~ 4,775,193) and a 5.14 Mb region 
(Chr06: 13,882,828 ~ 19,025,451) containing two INVs, two DUPs and two 
TRANS. These two regions involve 42 and 52 gene variations, respec-
tively (Fig. 2e). Chromosome 10 contained the largest number of INVs 
(Chr10: 13,491,13 ~ 31,515,899), comprising 224 genes (Fig. 2f). A total 
of 13 other SV regions were detected on the rest of the chromosomes 
(Supplementary Fig. 1).

Population structure and divergence of cowpea subspecies
In total, 344 cowpea accessions collected from various geographic 
regions were selected for whole-genome re-sequencing (Supplemen-
tary Table 18). We identified 7,982,974 SNPs and 1,874,358 InDels, with an 
average of 12.63 SNPs and 2.97 InDels per kb. After filtration, 1,262,497 
high-confidence SNPs were selected for population structure analysis. 
Principal component analysis (PCA) divided the 344 accessions into 
two clusters (Fig. 3a), which were mainly formed by grain (cluster I) and 
vegetable cowpeas (cluster II). Using the common bean as an outgroup, 
the phylogenetic tree of the 344 accessions revealed three groups 
centered on grain cowpea (G), vegetable cowpea landraces (VL) and 
vegetable cowpea cultivars (VC) (Fig. 3b). Group I corresponded to 
cluster I in the PCA, including the 2 wild cowpeas, 69 grain cowpeas, 
5 vegetable cowpeas and 1 uncertain usage. Group II constituted 147 
vegetable cowpeas, most of which (127) belong to landraces. Group 
III included 2 grain cowpeas and 92 vegetable cowpeas, 61.96% (57) of 
which were cultivars or breeding lines. Population structural analysis 

cereal substitute for the human population or as feed for livestock. 
Vegetable cowpea, also known as asparagus bean or yardlong bean, 
is cultivated for its long immature pods (40–100 cm in length) and is 
often consumed as a vegetable2,5. The vegetable cowpea is predomi-
nant in East and Southeast Asia and is ranked among the top ten Asian 
vegetables owing to its high tolerance to heat and drought as well as 
diverse nutrition enrichment6.

Grain and vegetable cowpeas vary greatly in many important agro-
nomic traits such as pod length (PL), grain number per pod (GNP) and 
nutrition. Trait differentiation in cowpea subspecies is postulated to 
be caused by human selection for favorable usage7,8. Previous studies 
have reported some quantitative trait loci (QTLs) controlling cowpea 
domestication and improvement traits, such as pod shattering (PS), PL, 
pod quality and seed size9–16. However, the genome-wide genetic varia-
tions associated with subspecies divergence remain largely unknown. 
Although a high-quality grain cowpea genome has been released17, the 
paucity of information regarding the vegetable cowpea genome is still 
hindering the elucidation of the genomic basis and selection signatures 
of key traits for shaping the subspecies’ differentiation and improvement.

In this study, we report two chromosome-scale genome assem-
blies of grain and vegetable cowpeas by combining PacBio, chromatin 
conformation capture (Hi-C) and Illumina sequencing technology 
toolkits. A genetic diversity panel encompassing 344 accessions of 
landraces, wild species and breeding lines was re-sequenced to clarify 
the phylogenomic evolution of cowpeas. Furthermore, genome-wide 
association studies (GWAS) were performed to identify the genes 
that are responsible for crucial agronomic traits. Our study reveals a 
global landscape of genome structural variations (SVs) between two 
subspecies and provides insights into cowpea domestication and 
improvement under selection.

Results
Genome assemblies and gene annotations
One vegetable-landrace cowpea (G98) with a super-long-pod and one 
grain cowpea (G323) with strong disease resistance were selected for 
de novo genome sequencing (Fig. 1a,b). Through k-mer analysis, the 
genome sizes of G98 and G323 were estimated to be 623.16 Mb and 
597.42 Mb, respectively (Supplementary Table 1). Next, draft assem-
blies of G98 (632.54 Mb) and G323 (593.26 Mb) were constructed using 
PacBio sequences (Supplementary Tables 2–5). Finally, the G98 and 
G323 genomes were adjusted to 568.24 Mb (scaffold N50 = 49.41 Mb) 
and 552.66 Mb (scaffold N50 = 49.35 Mb), respectively, using the Hi-C 
approach (Fig. 1c,d and Supplementary Tables 5–7).

Multiple genome assessments validated the high quality of the two 
genome assemblies. Firstly, 99.19% and 99.69% of Illumina reads were 
mapped to the G98 and G323 assemblies, respectively (Supplementary 
Table 8). Secondly, over 98% of the Core Eukaryotic Gene Mapping 
Approach (CEGMA) core eukaryotic genes and 95% of the Benchmark-
ing Universal Single-Copy Orthologue (BUSCO) genes could be prop-
erly mapped to the two assemblies (Supplementary Tables 9 and 10). 
In addition, Merqury analysis showed the high quality of G98 (44.48) 
and G323 (47.17), which is similar to the improved pea genome (ZW6; 
44.5)18. Using the IT97K-499-35 and A147 genomes as references17,19, 
the nucleotide accuracy rates of our two assemblies reached 99.6% 
and 97.74%, respectively.

We annotated 33,159 and 33,222 genes in the G98 and G323 
genomes, respectively (Supplementary Table 11); 89.63% and 90.17% 
of the transcriptome data could be mapped onto the predicted genes 
in the G98 and G323 genomes, indicating the high fidelity of the gene 
predictions. Furthermore, we also annotated 8,087 transfer RNA, 15,077 
ribosomal RNA, 83 microRNA and 325 pseudogenes throughout the 
G98 genome assembly, as well as 5,119 transfer RNA, 8,737 ribosomal 
RNA, 91 microRNA and 286 pseudogenes in the G323 genome.

In total, 56.97% and 55.25% of the G98 and G323 assemblies, 
respectively, were annotated as repetitive sequences (Supplementary 
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also supported the clades classification of the PCA and phylogenetic 
tree (Fig. 3b). When k = 2, two clusters were formed, corresponding to 
the grain and vegetable cowpeas in the PCA. When k = 3, cluster II was 
classified into two subclades divided among the landraces and cultivars 
or breeding lines (Fig. 3b).

Nucleotide diversity (π) and population divergence (fixation index, 
FST) in the three subpopulations or groups with multiple accessions 
were estimated (Fig. 3c). The G group (π = 0.0007) had much higher 
nucleotide diversity than the VL (π = 0.00047) and VC (π = 0.00024) 
groups. The FST values for G–VC (0.1903) and G–VL (0.0924) were higher 
than VC–VL (0.0498). Moreover, linkage disequilibrium decayed faster 
in the G group than in the VL and VC groups, indicating a higher degree 
of genetic recombination in grain cowpeas (Fig. 3d).

Genomic signatures of domestication and improvement
In many crops, human selection for specific traits reflects plant domes-
tication and leads to different edible types such as grain and vegetable 
usage in legume crops as well as oilseed and vegetable Brassica jun-
cea26–28. To investigate how natural or artificial selection has affected 
cowpea differentiation, we searched for selection signatures in the 
cowpea genome by comparing the selective sweeps among three 
subgroups. Using cross-population composite likelihood ratio test 
(XP-CLR) analyses, we identified a total of 189, 156 and 196 potential 

selective loci in G versus VL, VL versus VC and G versus VC, respectively 
(Supplementary Table 19). A total of 3,212 and 2,972 genes located in 
the selective regions are associated with differentiation in G versus 
VL and G versus VC, respectively, while 2,650 genes are in the regions 
associated with improvement in VL versus VC (Fig. 4a and Supplemen-
tary Table 19). Among them, 239 genes were identified in all three pair-
wise groups, implying that these genes might have been exposed to 
long-term and continuous selection during cowpea domestication 
and improvement or were unintentionally selected owing to the hitch-
hiking effect of their neighboring loci. Meanwhile, we also identified 
numerous putative selective sweeps by FST and π values, and multiple 
sweeps overlapped with the selected regions in XP-CLR (Supplementary 
Fig. 2 and Tables 20 and 21).

In total, 18 signals associated with PS, pod total starch content 
(PTS), seed total starch content (STS), GNP, pod soluble sugar content 
(PSS) and PL were co-identified by both selective sweep detection and 
GWAS analyses. We also found that over 70 known loci for drought 
tolerance, disease resistance and agronomic traits overlapped with 
the selective regions (Fig. 4a, Supplementary Fig. 2 and Supplemen-
tary Table 22). Seventeen signals for PS, one of the most conspicuous 
domestication syndrome-related traits, were identified in SNP-GWAS, 
and eight of them were also detected in InDel-GWAS (Fig. 5a and Sup-
plementary Tables 23–25). Among them, PS-3.2, which overlapped 
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with the known CPshat3 (refs. 9,29), contains an MYB transcription 
factor (VuG9803G034000). This gene is homologous to the cell wall 
biosynthesis-related AtMYB50 that affects shattering habits in different 
species30. Two haplotypes of PS-3.2 were observed in the 344 accessions, 
with HapII accessions have a higher shattering ratio (48%) (Fig. 4b). 
Similarly, E3 ubiquitin-protein ligase gene (VuPS2, VuG9801G016510; 
Fig. 5b), zinc finger CCCH domain protein (VuPS6, VuG9804G001420; 
Fig. 5c)31, MYB transcription factor (VuPS8, VuG9806G012680; Fig. 5d) 

and three uncharacterized proteins (VuPS4, VuG9803G014760; VuPS7, 
VuG9805G024700; VuPS10, VuG9808G017090; Fig. 5e–g) were consid-
ered as the related genes for other PS signals. Polymorphisms of these 
six PS-related loci were identified in the 344 accessions, which resulted 
in different haplotypes with significant variations in PS resistance (Fig. 5 
and Supplementary Tables 23–25). Three other PS loci (PS-3.3, PS-4.2, 
PS-10.3) were detected in InDel-GWAS. However, only slight differences 
in the shattering ratio were observed between different haplotypes of 
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the three loci (Supplementary Table 25). Interestingly, 6 of 14 PS-related 
loci were found in the domestication sweeps of G versus VL (Fig. 4a and 
Supplementary Fig. 2), which partially explains the differences in PS 
resistance between these 2 subspecies. Surprisingly, five PS loci were 
also observed in improvement sweeps in VL versus VC (Fig. 4a and 
Supplementary Fig. 2), although all accessions of both subpopulations 
exhibit strong PS resistance. Most PS-related candidate genes showed 
different expression patterns between the pods of G-type and V-type 
cowpeas. For instance, PS-1.1-related, PS-2.1-related and PS-6.1-related 
genes (VuG9801G008190, VuG9802G010740 and VuG9806G012680) 
had higher expression in pods of non-shattering V-type accessions at 
anthesis, but with fairly low expression in G-type cowpeas with higher 
shattering rates, indicating that these genes might be negative regula-
tors of PS. PS-1.2-related and PS-3.2-related genes (VuG9801G016510 
and VuG9803G034000) showed the highest expression level in the 
later stages of pod development in G-type accessions, suggesting 
a possible positive correlation between gene transcriptions and PS 
(Supplementary Fig. 3a,b and Supplementary Table 26).

One PTS-1.1 locus was co-identified by selective sweep and GWAS 
analyses that contains two ribokinase-like genes (VuG9801G016420 
and VuG9801G016430) acting in native starch granule degradation32. 
VuG9801G016420 is likely the candidate gene (VuPTS1) contributing to 
the pod starch content variation among accessions, as two haplotypes 
of this gene led to significantly different PTS phenotypes (Fig. 4c). 
VuG9801G016430 is less likely to be the candidate for PTS-1.1, as no 
sequence polymorphism could be observed. Interestingly, the sus-
tained higher expression of both genes in V-type cowpeas might also 
contribute to their final low PTS phenotype (Supplementary Fig. 3b and 
Supplementary Table 26). STS-1.1 contained a soluble metal binding 
protein encoding gene VuG9801G016790 (VuSTS1), whose ortholog is 
specifically expressed in companion cells of the phloem and involved in 
starch accumulation in Arabidopsis33. Three haplotypes of VuSTS1 were 
identified in the different accessions, and in one test, VuSTS1- HapIII was 
found to result in lower seed starch content than the others (Fig. 4d). 
In addition, one locus significantly associated with GNP (GNP-4.1), an 
important factor affecting grain yield in cowpea, was identified by all 

analyses. The putative gene VuG9804G003460 (VuGNP1) in this region 
encodes a KNOX2 protein, which was found to mediate panicle length 
and spikelet number in rice34. VuGNP1 displayed two haplotypes; the 
average GNP in the VuGNP1-HapI accessions was higher than that in 
VuGNP1-HapII accessions (Fig. 4e).

Yield and quality variations
Large variations in PL were observed in the 344 accessions, with the G 
subpopulation generally showing significantly shorter PLs than those of 
the VL and VC subpopulations (Fig. 6a). In total, four PL-related signals 
(PL-3.1, PL-3.2, PL-5.1 and PL-9.1) were detected in SNP-GWAS; PL-3.1, 
PL-3.2 and PL-9.1 were also detected in InDel-GWAS (Fig. 6b and Sup-
plementary Figs. 4a and 5a). Two nitrate transporter 1 and peptide 
transporter family genes (VuG9803G015800 and VuG9803G015810) 
were identified in the PL-3.1 locus. Nitrate and peptide transporter 
family proteins transport numerous substrates35,36 and are essen-
tial for plant development. VuG9803G015800 is less likely to be the 
candidate because no amino acid substitution was observed in any 
accessions. InDel-GWAS revealed an A/AG mutation in an exon–intron 
junction site of VuG9803G015810, which led to alternatively spliced 
transcripts between G98 and G323 (the third exon of 219 bp in G323 
became a part of the second intron in G98) (Supplementary Fig. 6). 
Two haplotypes of this gene in different accessions caused significantly 
different PL phenotypes (Fig. 6b), supporting that VuG9803G015810 
is the putative VuPL1 in the PL-3.1 locus. The PL-9.1 locus contains six 
tandem-duplicating Wall-Associated Receptor Kinase (WAK) genes. 
Among them, VuG9809G017980, which is homologous to Arabi-
dopsis WAK2 (AT1G21270, a cell wall-associated kinase required for 
invertase activity and cell growth)37,38, is closest to the peak SNP (Chr09: 
35607906) and was considered as the putative VuPL4. Three haplo-
types of VuPL4 were observed, and VuPL4-HapI likely contributes to 
long PL (Fig. 6b). Transcriptions of five WAKs (VuG9809G017960, 
VuG9809G017970, VuG9809G017980, VuG9809G017990 and 
VuG9809G018010) were detected in developing pods but were rarely 
observed in seeds at the same stage (Supplementary Fig. 3a). Their 
higher expressional levels were usually observed in VC or VL cowpea 
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pods rather than those of G cowpeas (Supplementary Fig. 3b), implying 
another possibility that WAKs might contribute to the PL difference in 
dose/transcripts-dependent manner. Furthermore, both putative genes 

in the PL-3.2 (VuG9803G016720, VuPL2) and PL-5.1 (VuG9805G030040, 
VuPL3) loci encode uncharacterized proteins and both have two haplo-
types that are related to PL variations (Supplementary Fig. 4a). A new 
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PL-related QTL on VuA147Chr03 (61899120-62027427)18 likely contained 
our PL-3.2 locus, even though their genomic locations were different, 
possibly because of a large INV between the two genome assembles 
(Supplementary Fig. 7 and Supplementary Table 27). In addition, tran-
scriptional profiles of both genes indicated their potential function at 
an earlier pod development stage (Supplementary Fig. 3b).

The favorable alleles of the putative genes in PL-9.1 and PL-3.1 
seem to have a stronger function on the PL phenotype than those in 
other loci (Fig. 6c), and PL increased along with the number of favored 
alleles of PL loci in single accession (Fig. 6d). Moreover, VuPL4-HapI 
and VuPL1-HapII were strongly selected during cowpea domestication 
and improvement, respectively (Fig. 6a). The function of both VuPL1 
and VuPL4 were further validated in a recombinant inbred line (RIL) 
population (Supplementary Fig. 8a,b and Supplementary Table 28), 
and VuPL1 seems to have a stronger role than VuPL4 in this population 
(Supplementary Fig. 8c). The PL-9.1 signal was also identified by several 
selective sweep detections (Supplementary Fig. 2a–c). Unsurprisingly, 
abundant InDel diversity was found in six tandem-duplicating WAK 
genes in G-type cowpeas, which was rarely observed in the VC type (Sup-
plementary Table 29), indicating that selections on this locus probably 
facilitated cowpea domestication and improvement.

Two GNP-associated signals were detected (Fig. 6e), of which 
GNP-4.1 was stably identified by domestication sweeps and GNP-
10.1 was identified in improvement sweeps (Fig. 4a,e and Supple-
mentary Fig. 2b). Putative VuGNP2 (VuG9810G016140) in GNP-10.1 
encoded 1-aminocyclopropane-1-carboxylate synthase (ACS), which 
is a rate-limiting enzyme of ethylene biosynthesis39. Among the three 
haplotypes of VuGNP2, VuGNP2-HapIII is identified as the favored type 
(Fig. 6e). Seed weight is another important yield-related trait that has 
undergone strong selection in crop domestication and improvement 
processes20,26,40. Two signals associated with thousand seeds weight 
(TSW) were detected by both SNP-GWAS and InDel-GWAS (Fig. 6f and 
Supplementary Fig. 5b). A transcription termination factor (MTERF8) 
coding gene VuG9809G001620 (VuTSW1) was anchored near the peak 
SNP of the TSW-9.1 locus, whose product (MTERF proteins) has multiple 
roles in plant development41. Among the three haplotypes of VuTSW1, 
VuTSW1-HapII is probably the favored type (Fig. 6f). The peak SNP of 
TSW-9.2 is located inside VuG9809G007710 (VuTSW2), which encodes 
an endoplasmic reticulum membrane protein that serves many roles in 
the cell, including calcium storage, protein synthesis and lipid metabo-
lism in plants42,43. Three haplotypes of VuTSW2 were observed, and 
VuTSW2-HapIII showed the largest TSW (Fig. 6f). Moreover, the func-
tions of VuTSW1 and VuTSW2 were further validated in an RIL popula-
tion and an F2 population, respectively (Supplementary Fig. 8d–f).

Soluble sugar, total starch and crude protein content are three 
basic quality traits of legume crops44,45. We detected three signals 
(PSS-9.1, PSS-9.2, PSS-11.1) that were significantly associated with 
PSS (Fig. 7a). PSS-9.1 contained two bidirectional sugar transporter 
SWEET10-like genes (VuG9809G011400 and VuG9809G011410), 
which have important roles in transporting sucrose and hexose46–50. 
VuG9809G011400 showed higher expression patterns in devel-
oping pods while VuG9809G011410 displayed nearly no expres-
sion in all tested tissues (Supplementary Fig. 3a,b), indicating that 
VuG9809G011400 is probably the function-relevant gene for PSS-9.1 
(VuPSS1). A xylulose kinase protein VuG9809G020860, located 662 bp 

downstream of the peak SNP of PSS-9.2, was proposed as the putative 
VuPSS2. However, no SNP mutations were identified in any accessions, 
indicating that VuPSS2 may affect PSS content by its cis-regulatory 
elements. The expression pattern of this gene also supports this 
hypothesis (Supplementary Fig. 3b). The PSS-11.1 locus contained 
three beta-galactosidase genes (VuG9811G017350, VuG9811G017390 
and VuG9811G017400), a negative regulator of cell galactose levels51, 
and VuG9811G017400 (VuPSS3) is the closest gene to the peak SNP. 
Four haplotypes were investigated in VuPSS3, and VuPSS3-HapIV exhib-
ited the highest PSS content (Fig. 7b). The low transcription levels of 
VuG9811G017390 and VuG9811G017400 in VC cowpea might relate 
to its high PSS content (Supplementary Fig. 4b). In addition, we dis-
covered two signals (PCP-7.1 and PCP-8.1) associated with pod crude 
protein (PCP) content by both SNP-GWAS and InDel-GWAS (Fig. 7c and 
Supplementary Fig. 5d). PCP-7.1 contains an uncharacterized protein 
gene (VuPCP1), and VuPCP1-HapII probably leads to higher PCP content 
(Supplementary Table 25). VuPCP2 (VuG9808G012140) in PCP-8.1 
encodes a bHLH transcription factor that involves the E3 ubiquitin 
pathway, and VuPCP2-HapI was the predominant type in PCP (Fig. 7c,d).

Furthermore, GWAS also revealed one signal associated with seed 
soluble sugar (SSS) content (Fig. 7e), which contained a FAR1-RELATED 
SEQUENCE (FAR1) family protein (VuSSS1, VuG9810G003320). FAR1 has 
roles in starch synthesis as well as sugar transport and degradation52. 
VuSSS1 generated two haplotypes and VuSSS1-HapI accessions dis-
played higher SSS content (Fig. 7f). In addition, we detected two signals 
associated with seed crude protein (SCP) content (Fig. 7g,h and Sup-
plementary Fig. 4b). SCP-3.1 contains a phosphoinositide phosphatase 
SAC9 protein gene (VuSCP1, VuG9803G018410) that belongs to the SAC 
domain-containing family involved in protein regulation53,54. Three 
main haplotypes were found, and VuSCP1-HapIII showed the highest 
SCP values (Fig. 7h). The SCP-4.1 region contained a RING-type E3 ubiq-
uitin transferase protein VuG9804G016420 (VuSCP2), VuSCP2-HapIII 
and VuSCP2-HapIV usually led to higher SCP (Supplementary Fig. 4b). 
Similar expression patterns of VuSCP1 and VuSCP2 suggest that they 
may affect the SCP phenotype at the mid-stage of seed development 
(Supplementary Fig. 3c).

In total, five signals for STS were detected by GWAS (Fig. 7i and 
Supplementary Figs. 4c and 5h). VuSTS2 (VuG9802G007660) in STS-2.1 
contained an MYB transcription factor and VuSTS5 (VuG9811G001010) 
in the STS-11.1 locus encodes a phosphatidylserine decarboxylase 
that possibly affects a key plant development regulator, phosphati-
dylserine55. Different haplotypes of both genes showed varied STSs in 
the two environments, suggesting that they were largely influenced 
by environmental conditions (Fig. 7j and Supplementary Fig. 4c). 
VuG9803G004130 (VuSTS3) in STS-3.1 encoded an uncharacterized 
protein, and VuSTS3-HapIII exhibited the largest effect on STS. STS-6.1 
contained a NAD-dependent protein deacetylase VuG9806G009220 
(VuSTS4), which possibly affects starch biosynthesis and regulation56, and 
VuSTS4-HapI showed a stronger effect on STS (Supplementary Fig. 4c).

Discussion
Cowpeas, which are abundant in balanced starch and protein, are suit-
able substitutes for cereals and animal proteins in developing countries. 
Here, we assembled two chromosome-scale genomes. The differen-
tially expanded genes in vegetable G98 and grain G323 are probably 

Fig. 6 | Yield traits-related gene mining in cowpea. a, The PL and haplotype 
distribution of VuPL1 and VuPL4 in different subpopulations. The columns 
in the outer circle of the evolutionary tree represent PL values of the cowpea 
accessions; the light-blue stars indicate the haplotypes related to longer PL.  
b, GWAS for PL trait, pairwise LD heat map and haplotype analysis for the 
candidate genes in the PL-3.1 and PL-9.1 loci. c, The effect of different signals on 
PL. d, The additive effects of different allele pyramids on PL. e, GWAS for the trait 
of GNP and candidate gene analysis of VuGNP2. f, GWAS for the TSW trait and 
candidate gene analysis of VuTSW1 and VuTSW2. The putative genes for each 

signal are shown in the blue box in the LD heat map. In the boxplots, the n values 
indicate the accession number with the corresponding haplotypes, the 25% and 
75% quartiles are shown as lower and upper edges of boxes, respectively, central 
lines denote the median and the small hollow square indicates the mean. The 
whiskers extend to 1.5× the interquartile range and the small solid diamonds 
indicate outliers. In b, c, e and f, the P values for two-sided Student’s t-test are 
shown above the boxplot. In d, significant levels were determined using a least 
significant difference test and the different lowercase letters above the boxplots 
represent significant differences (P ≤ 0.05).
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responsible for their long PL and high STS, respectively (Fig. 2). Moreo-
ver, numerous SVs containing genes enriched in Gene Ontology (GO) 
terms such as hormone transport and cell wall modification might have 
been strongly selected during cowpea domestication. SVs possessing 

genes related to GO terms like protein catabolic process and l-amino 
acid transmembrane transporter activities have probably been sub-
jected to artificial selection during vegetable cowpea improvement 
(Supplementary Fig. 9).
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Loss of PS is recognized as a domestication syndrome event26,57. 
Thus, strong and continuous selection on PS loci is unsurprisingly 
observed during G to VL cowpea domestication (Fig. 4 and Supplemen-
tary Fig. 2). However, during the vegetable cowpea improvement (VL 
to VC), PS-1.2, PS-3.1, PS-4.1 and PS-6.1 were sporadically re-introduced 
into four vegetable cultivars (Fig. 5b–e and Supplementary Table 30). 
A possible reason for this phenomenon is that these loci might have 
been selected alongside their adjacent genes through a ‘hitchhik-
ing’ effect, as several drought tolerance, disease resistance and agro-
nomic trait-related genes or loci (for example, PTS-1.1, DT3.4, DT4.1, 
QRk-vu11.1, CPdel5 and DT8.4)9,15,58,59 were found in the vicinity of these 

PS loci (Fig. 4a, Supplementary Fig. 2 and Supplementary Tables 22 and 
30). The findings of multiple PS loci will raise the potential of pyramid-
ing beneficial non-shattering alleles into the shattering-prone grain 
cowpea, enabling the breeding of PS-resilient cultivars. On the other 
hand, a diversity of loci related to drought resistance or disease resist-
ance (DTs, Mac-4, QRk-vu1.1, Fot3-1 and FwRs)10,58–69 is rarely observed 
in VC cowpeas (Fig. 8 and Supplementary Tables 22 and 30), which is 
largely consistent with the lower stress-resistance of VC than those of 
G cowpeas19,68,70. The coexistence of beneficial stress-relevant alleles 
and unfavorable PS loci in four VC accessions (Supplementary Table 30) 
suggests potential linkage drags between them. This finding provides 
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a genomic roadmap toward avoiding the re-introduction of PS genes 
during stress-resistance improvement in vegetable cowpeas.

PL, GNP and TSW are important yield factors, whereas starch is 
a critical factor of crop quality and nutrition in cowpeas32. VL and VC 
groups normally show higher PL and GNP values than G-group cow-
peas, which might be attributed to their favorable haplotypes of the 
VuPL1, VuPL4 and VuGNP1 genes (Fig. 6a, Supplementary Fig. 10a and  
Supplementary Table 30). The dry seed yield of grain cowpeas from 
China is about 1,022 kg ha−1, much higher than that in Africa (581.4 kg ha−1; 
FAOSTAT, 2020; https://www.fao.org/faostat/en/#data/QCL), whereas 
the seed yield of vegetable cowpeas ranges from 1,500 to 2,250 kg ha−1 
(unpublished data), largely owing to their longer PL and higher GNP. 
Thus, our findings point to the promising applicability of these  
beneficial haplotypes in yield enhancements for grain cowpeas, which 
would help to mitigate hunger and malnutrition in developing regions.

The polymorphism and distribution of yield-related and 
quality-related genes among the three subpopulations (G, VL and VC) 
dissected the genetic basis of phenotypic differentiation in cowpeas 
(Fig. 8 and Supplementary Fig. 10). For instance, grain cowpeas usually 
exhibit higher TSW, PTS, STS and SSS values than vegetable cowpeas. 
Unsurprisingly, nine favorable alleles for these four traits were com-
monly identified in grain cowpeas. Conversely, favorable alleles of 
VuPTS1, VuSTS1 and VuTSW2 genes were rarely observed in vegetable 
cowpeas (Fig. 8a), and the favorable VuTSW1-HapII and VuSSS1-HapI 
were more strongly selected in grain cowpeas than in vegetable  
cowpeas (Supplementary Fig. 10b,f). Surprisingly, grain cowpeas pos-
sess lower SCP, an important nutritional ingredient, than vegetable 
cowpeas, which might relate to the over-accumulation of SSS and 
STS as well as their higher TSW (Fig. 8c and Supplementary Fig. 10), as 
both total sugar and seed size were negatively correlated with protein 
content in soybeans49,50. Moreover, artificial selection for taste quality 
of grain may be another reason for low SCP in grain cowpeas, as higher 
protein content may increase seed hardness71–73. Interestingly, the 
favorable alleles of two VuSCP genes as well as favorable VuSTS2-HapII 
and VuSTS5-HapII were more frequently observed in vegetable  
cowpeas, displaying their potential as genetic resources for bal-
anced starch and protein improvement in grain cowpeas. By contrast, 
the increase in PSS during cowpea domestication is likely driven by  
stacking the favorable VuPSS alleles (Fig. 8 and Supplementary Fig. 10c). 
This finding provides useful guidance for the precision breeding of 
high-quality vegetable cowpeas.

In conclusion, this study provides a global landscape of 
genome-wide genetic variations associated with important agronomic 
traits in cowpeas and offers genomic insights into the domestication 
and improvement of cowpea subspecies. The differential genomic 
selections of yield and quality traits will facilitate the establishment 
of genetic resource toolkits for the bidirectionally reciprocal improve-
ment of grain and vegetable cowpeas.
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Methods
Plant materials
A total of 344 cowpea accessions were selected for re-sequencing, of 
which 307 accessions were collected in the Institute of Vegetables, 
Zhejiang Academy of Agricultural Sciences (ZAAS), 35 accessions were 
introduced from the National Crop Genebank of China, Institute of 
Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS) and 
2 wild cowpea accessions (V. unguiculata subsp. baoulensis, V. unguicu-
lata subsp. letouzeyi) were exchanged from Dr Remy S. Pasquet at 
Université Montpellier in France. Among these accessions, 83 (24.13%) 
were collected from genebanks outside of China, and the remaining 
261 (75.87%) were from a new core collection in China15. Among the 342 
cultivated cowpeas, 87 belonged to the grain cowpea, 244 belonged to 
the vegetable cowpea and 11 were uncertain usage. Detailed informa-
tion for each accession is provided in Supplementary Table 17.

Genome library construction and sequencing of G98 and G323
To extract high molecular weight DNA for constructing different 
sequencing libraries, the seeds of G98 and G323 were sowed in plastic 
pots and grown in a growth chamber for 2 weeks. The seedlings were 
transferred to a dark room for 24 h before sample collection. Genomic 
DNA was isolated from young leaves using the cetyltrimethylammo-
nium bromide method74.

The Illumina sequencing libraries for G98 and G323 were prepared 
using the TruSeq Nano DNA High Throughput Library Prep Kit following 
the manufacturer’s instructions (Illumina). In brief, at least 1 µg DNA 
from each genotype was sheared using Covaris M220. The fragments 
were subjected to end repairing and adaptor ligation, and then separated 
on 2% agarose gel. The final paired-end libraries with insertion sizes of 
around 350 bp were sequenced on an Illumina HiSeq 2000 platform.

PacBio sequencing libraries of G98 and G323 were constructed 
following the standard single molecular real-time bell construction 
protocol (PacBio). The DNA was randomly sheared using g-TUBE (Cova-
ris), the fragments were treated with end repairing, adaptor ligation 
and exonuclease digestion, and the desired fragments of 10–50 kb 
were selected using BluePippin electrophoresis. Finally, the librar-
ies were constructed and sequenced on the PacBio CCS system with 
P6-C4 chemistry.

Hi-C libraries were created from tender leaves of G98 and G323 fol-
lowing the proximo Hi-C plant protocol. The samples were first fixed in 
formaldehyde to keep the cross-linking between DNA and protein and 
maintain their 3D structure in cells. Then the DNA was digested with 
the restriction endonuclease HindIII to generate different fragments 
with sticky ends. The fragments were treated with end repairing and 
adaptor ligation, resulting in the formation of chimeric circles. Finally, 
the cyclized fragments were disconnected and purified, and fragments 
with a size of 300–700 bp were selected to construct libraries and 
sequenced on the Illumina X Ten platform.

Genome assembly of two genotypes
The identical bioinformatic process was used to assemble the genomes 
of G98 and G323. Firstly, clean, short Illumina reads were used to esti-
mate genome size by k-mer distribution75 with KAT (v.2.4.1; https://
github.com/TGAC/KAT). Subsequently, the PacBio CCS data was used 
to assemble a draft genome using hifiasm (v.0.12) software76. Next, the 
Hi-C data was aligned into contigs and anchored into chromosomes 
using LACHESIS (v.2.0) software77.

To assess the quality of the genome assembly for G98 and G323, 
the 458 conserved core genes in the CEGMA (v.2.5) database and the 
1,614 core eukaryotic genes in the BUSCO (v.4) database were used 
to evaluate genome completeness, and then the Illumina clean reads 
were mapped to the assembled genome using BWA (v.0.7.8) to assess 
coverage rate and average depth. Finally, Merqury (v.1.3) was used to 
assess the consensus quality value and completeness of the genome 
assembly78.

Transcriptome sequencing
For genome annotation, G98 and G323 were grown in a greenhouse 
under normal watering and drought-stress conditions. The drought 
treatment was performed from the third week until the fifth week 
after sowing. Then the well-hydrated and drought-stressed young 
seedling roots and leaves were collected. Young flower buds, pods  
5 days after pollination and developing seeds 13 days after pollination 
under normal watering conditions were also collected. Total RNA for 
these samples was extracted using the QIAGEN RNeasy Plant Mini Kit 
(Hilden, Germany). RNA-sequencing (RNA-seq) libraries were prepared 
using NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA) 
following the manufacturer’s recommendations and sequenced on an 
Illumina HiSeq 2000 platform.

Genome annotation in G98 and G323 genomes
For the annotation of repeats, de novo repeat libraries for the G98 
genome and the G323 genome were created first using RepeatModeler 
(v.1.05)79. The predicted repeats were classified using RepeatClas-
sifier79 based on the known Repbase (v.19.06)80, REXdb (v.3.0)81 and 
Dfam (v.3.2)82 databases. The LTRs were identified using LTRharvest 
(v.1.5.9) (-minlenltr 100 -maxlenltr 40,000 -mintsd 4 -maxtsd 6 -motif 
TGCA -motifmis 1 -similar 85 -vic 10 -seed 20 -seqids yes)83 and LTR_
finder (v.1.1) (-D 40,000 -d 100 -L 9,000 -l 50 -p 20 -C -M 0.9)84. Then 
the de novo predicted results and repeats identified from the known 
databases were combined to form a species-specific transposable 
elements library for G98 and G323, respectively. Finally, the transpos-
able element sequences were identified and classified by a homology 
search against the library using RepeatMasker (v.4.10)85. In addition, 
tandem repeats were annotated by Tandem Repeats Finder86 and the 
MIcroSAtellite identification tool (MISA v.2.1)87.

For the annotation of protein-coding genes, three strategies, 
including de novo prediction, homology-based prediction and 
RNA-seq-based prediction, were used to identify and annotate can-
didate genes for G98 and G323, respectively. The de novo prediction 
was performed using two ab initio gene-prediction software tools: 
Augustus (v.2.4)88 and SNAP (v.2013-11-29)89. In addition, the refer-
ence gene models from Arabidopsis thaliana, Phaseolus vulgaris, 
Vigna unguiculata, V. radiata and V. angularis were used to conduct 
homology-based predictions using the software GeMoMa (v.1.7)90. 
The RNA-seq data from different tissues were mapped to the cowpea 
reference genome using Hisat (v.2.0.4)91 and assembled by Stringtie 
(v.1.2.3)92, and candidate genes were predicted based on the assembled 
transcripts using GeneMarkS-T (v.5.1)93. Finally, the predicted genes 
from different approaches were combined using the EVM software 
(v.1.1.1)94 and updated by PASA (v.2.2.0)95. All the predicted genes were 
annotated by searching the GenBank non-redundant (v.20200921), 
TrEMBL (v.202005), Pfam (v.33.1), SwissProt (v.202005), eukaryotic 
orthologous groups (KOG, v.20110125), GO (v.20200615) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG, v.20191220) databases.

Meanwhile, non-coding RNAs were identified using different soft-
ware. tRNA was identified using the tRNAscan-SE (v.1.3.1)96, rRNA was 
identified by barrnap (v.0.9)97, miRNA was identified by the miRBase 
(v.21) database and snoRNA and snRNA were predicted using the INFER-
NAL against the Rfam (v.12.0) database98,99.

To identify the pseudogenes, the GenBlastA (v.1.0.4)100 program 
was used to scan the whole genomes to search the candidates after 
masking predicted functional genes, then the non-mature mutations 
and frame-shift mutations in the candidates were further identified 
using GeneWise (v.2.4.1)101 to confirm the pseudogenes.

Comparative genomics analysis in legume crops
A total of 25 plant genomes including G98, G323, IT97K-499-35, a 
monocot (Oryza sativa)102, an eudicot (Arabidopsis thaliana)103 and 
20 legume crops (including Vigna radiata104, V. angularis105, Phaseo-
lus vulgaris106, P. lunatus107, Glycine max108, Cajanus cajan109, Mucuna 
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pruriens (https://www.ncbi.nlm.nih.gov/genome/71552), Spatholo-
bus suberectus Dunn110, Abrus precatorius (https://www.ncbi.nlm.nih.
gov/genome/74709), Lotus japonicus111, Pisum sativum L.112, Trifolium 
pratense113, Medicago truncatula114, Cicer arietinum115, Lupinus angus-
tifolius116, Arachis duranensis117, A. ipaensis117, Prosopis alba (https://
www.ncbi.nlm.nih.gov/genome/79095), Mimosa pudica118 and Cercis 
canadensis118) were used to construct a phylogenetic tree. The protein 
sequences of ortholog genes were identified among these genomes 
first using OrthoFinder (v.2.3.9)119, and 1,030 single-copy ortholog 
genes were used to estimate their phylogenetic relationships by con-
structing a phylogenetic tree using IQ-TREE (v.1.6.11)120. A Markov chain 
Monte Carlo tree program embedded in PAML (v.4.9)121 was used to cal-
culate the divergence time. The expansion and contraction of ortholo-
gous genes were searched using CAFE (v.4.2) (https://github.com/
hahnlab/CAFE). GO and KEGG enrichment analyses were performed 
using the R package ClusterProfiler (v.3.18.0)122 and P values of <0.05 
indicated significantly enriched genes. For G98 and G323, the positive 
selection genes were also identified using CodeML in PAML (v.4.9). Gene 
collinearity analysis was performed using diamond (v.0.9.29.130) and 
MCScanX ( jcvi) to determine the pairwise similarity.

SV analysis between G98 and G323
To compare two genomes, we used MUMmer (v.4.0)123 to perform 
whole-genome alignment using the G323 genome as a reference and 
then used SyRI (v.1.4)124 to detect the SNPs, small InDels (2–49 bp) and 
larger-scale SVs (≥50 bp). The detected SVs included TRANS, INVs, 
DUPs, PAVs (≥50 bp) and CNVs. The locations of the SNPs and InDels in 
the genome were determined using the ANNOVAR package (v.2020-10-
7)124. GO and KEGG analyses for the genes with functional alterations 
were conducted using clusterProfiler (v.3.18.0)122.

Genome re-sequencing of 344 accessions and SNP calling
The genomic DNA extraction, construction of the Illumina libraries and 
re-sequencing of 344 accessions were done using the same protocol 
as for G98 and G323 above. The sequencing depth for each accession 
is about 10×. The raw reads were filtered by removing the adaptor 
sequences, low-quality reads with >10% N and Q10 > 50% to generate 
clean reads. All clean reads for each accession were aligned to the G98 
genome using the ‘MEM’ algorithm in the Burrows–Wheeler Aligner 
(bwa-mem2 v.2.2)125. After filtering the redundant reads using Samtools 
(v.1.9)126, the HaplotypeCaller module in GATK (v.4.1.5.0)127 was used 
to generate gvcf files for each accession and then to identify SNPs 
and InDels in the panel. SNP and InDel annotations were conducted 
based on the G98 genome using SnpEff (v.5.1)128. The original SNPs were 
further filtered following the criterion that only SNPs or InDels with a 
minor allele frequency greater than 5% and less than 20% missing data 
were considered high-quality SNPs or InDels. Finally, a total of 1,262,497 
high-quality SNPs and 298,495 high-quality InDels were obtained and 
used for further analysis.

Population structure analysis
A common bean accession was used as an outgroup for population 
structure analysis after combining into the 344 accessions. A rooted 
neighbor-joining phylogenetic tree was conducted using MEGA7 
(ref. 129) with 500 bootstraps. PCA was performed using EIGENSOFT 
(v.7.2.1)130. Population structure analysis was performed using admix-
ture (v.1.23)131. Admixture analyses were run 20 times for each K value 
ranging from 2 to 12.

According to the population structure analysis results, values of 
π and FST of each subgroup were calculated using VCFtools (v.0.1.15; 
https://vcftools.github.io/index.html). For each subgroup, 50 acces-
sions were randomly sampled each time and repeated 100 times to 
calculate the average value of π and FST. In addition, linkage disequi-
librium decay was calculated for all pairs of SNPs within 500 kb using 
PopLDdecay (v.3.27)132 with parameters ‘-MaxDist 500 -Het 0.1 -Miss 0.1’.

Field experiments and phenotyping
All accessions were planted for two repeated tests in the spring of 
2021. Baiyun research base of GAAS in Guangzhou (RE1; 23° 07′ N, 113° 
34′ E) and Hangzhou (RE2; 29° 50′ N, 120° 04′ E) were selected as two 
main habitats representing the different environmental conditions of 
South and East China. Two experimental replications were conducted 
at each site. PS was recorded as 0, ‘no shattering’ or 1, ‘pods opened and 
twisted’. PL was determined by measuring the length of ten representa-
tive pods for each accession. The GNPs were only calculated based on 
five representative pods in Hangzhou. Seed weight was measured with 
SC-G software (Hangzhou Wanshen Detection Technology). The fresh 
pods at the commodity period and the mature seeds were collected 
for pod quality and seed quality assessment, respectively. The soluble 
sugar and total starch content were assessed using the quality analysis 
kit following the manufacturer’s instructions (Suzhou Keming). Crude 
protein was measured using the Kjeldahl method133.

GWAS analysis
GWAS for the ten traits was performed using the SNP and InDel 
data under the efficient mixed-model association expedited 
(EMMAX) program in GEMMA (v.0.94.1)134. A kinship (K) matrix in the 
emmax-kin-intel package of EMMAX was used to correct the popula-
tion structure. The significance threshold of SNP-trait associations 
was established with a false-detection-rate-adjusted P < 0.05 using the 
Benjamini–Hochberg procedure135, which corresponds to an uncor-
rected P value of approximately 1.0 × 10−5. Given that the genome-wide 
average distance of linkage disequilibrium decay (r2 = 0.40) is 100 kb, 
adjacent GWAS loci within 100 kb were considered as a GWAS interval 
or signal. To compare our PL signals with the recently reported PL 
loci19, we used MUMmer (v.4.0)123 to perform whole-genome align-
ment among four genomes (G98, G323, IT97K-499-35 and A147) to 
determine their collinearity.

All genes located directly in or within 100 kb of the GWAS signal 
were selected as the putative genes for the GWAS loci. LDblockShow 
(v.1.32) was used to examine the local linkage disequilibrium of can-
didate regions. To determine the possible candidate gene for each 
signal, the SNPs and InDels inside the linkage disequilibrium block 
were sorted in ascending order of P value (<10−5). Those genes close 
to or covering those SNPs or InDels with the lowest P values are the 
possible candidate genes. Information on gene annotation and func-
tion evidence of homologous genes in Arabidopsis thaliana or other 
plants were used to assist with the selection of putative target genes. 
Meanwhile, a haplotype analysis of the candidate gene was conducted 
to investigate the correlation between haplotypes and phenotypes at 
the population level to confirm its genetic effect on the target trait. 
Then the expression profiles of these genes during pod and seed devel-
opment in different cowpeas were also considered as references for 
their function in the target trait.

CDS sequences of the possible candidate genes were used to blast 
the transcripts of Arabidopsis thaliana to search the homologous 
genes. In addition, the genomic syntenic analysis between G98 and 
Arabidopsis thaliana was also performed using diamond (v.0.9.29.130) 
and MCScanX ( jcvi) to determine the collinearity blocks.

Sweep selection analysis
A cross-population composite likelihood ratio was calculated using 
the XP-CLR package (v.1.0)136 with sliding windows of 100 kb and a step 
size of 10 kb. The selective sweeps were identified by comparing the G 
group versus the VL group for differentiation sweeps and the VL group 
versus the VC group for improvement sweeps. To further confirm the 
selective sweeps, we also investigated the FST value and π ratio in differ-
ent subgroup comparisons by a slide window approach with a window 
size of 100 kb and a step of 10 kb using Vcftools (v.0.1.15). The top 5% 
of regions were assigned to candidate selective regions, and genes in 
these regions were considered candidate genes.
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Expression of the candidate genes
Digital RNA-seq137 was conducted for the developing pods and seeds 
from D413 (VC type), D445 (VL type) and D722 (G type) at 0, 5, 10 
and 15 days after anthesis, respectively, with three biological rep-
licates. In brief, total RNA was extracted using the QIAGEN RNeasy 
Plant Mini Kit (QIAGEN). The RNA-seq libraries were prepared using 
KC-DigitalTM Stranded mRNA Library Prep Kit for Illumina (Wuhan 
Seqhealth) following the manufacturer’s instructions and each cDNA 
molecule was labeled using a unique molecular identifier of eight  
random bases138. Sequencing was performed on a DNBSEQ-T7 
sequencer (MGI Tech). After filtering the raw data, clean reads were 
clustered according to the unique molecular identifier sequences, 
and consensus sequences were generated based on the sequences  
identified through pairwise alignment and multiple sequence align-
ment. The consensus sequences were aligned to the G98 genome 
using STAR software (v.2.5.3a) with default parameters to calculate the 
reads per kb per million reads. The expression patterns of candidate 
genes were displayed using edgeR package (v.3.12.1)139. Enrichment 
significance (P value) was calculated using the hypergeometric test 
(one-sided).

PL and TSW gene verification in bi-parental populations
An RIL population (183 lines)15, created by single-seed descent from 
the cross of a VL ‘ZN016’ and a VC ‘Zhijiang282’, and an F2 population 
(165 individuals), constructed by the cross of G98 and G323, were used 
for validation of the GWAS signals. Different alleles of VuPL1 (HapI and 
HapII), VuPL4 (HapI and HapII) and VuTSW1 (HapI and HapIII) were 
observed in the parents of the RIL population. Different alleles of VuPL1 
(HapI and HapII), VuPL2 (HapI and HapII), VuPL3 (HapI and HapII), VuPL4 
(HapI and HapIII), VuTSW1 (HapI and HapIII) and VuTSW2 (HapI and 
HapIII) were observed in the parents of the F2 population. The pheno-
types of TSW and PL were investigated in Haining County (30° 32′ N, 
120° 41′ E) in 2013 (RE3) and 2019 (RE4). The haplotypes of candidate 
genes were examined by KASP marker SNPs from the candidate genes 
of PL, and TSW signals were selected to convert into KASP markers and 
amplify in these two populations. KASP primer design and genotyping 
followed a previous publication140.

Statistical tests used
Details of the statistics applied are provided in the figure legends. 
Pairwise comparisons were conducted using a two-tailed Student’s 
t-test. Multiple comparisons were analyzed using the least significant 
difference method with Bonferroni correction. Statistical analyses and 
plotting were performed using Origin (v.9.0).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The genome assemblies of G98 (accession number JBALLC000000000) 
and G323 (accession number JAZDUG000000000) and the 
re-sequencing data of 344 accessions have been deposited in the 
NCBI Sequence Read Archive under the BioProject accession num-
ber PRJNA889224; the RNA-seq data for gene annotation have been 
deposited in the NCBI Sequence Read Archive under BioProject acces-
sion number PRJNA954189; the transcriptome data of three cowpea 
accessions have been deposited in the NCBI Sequence Read Archive 
under BioProject accession number PRJNA970477. The genotype and 
phenotype data can be accessed in figshare (https://doi.org/10.6084/
m9.figshare.21646556)141.

Code availability
All codes and tools used in this study are described in Methods and 
Reporting Summary.
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