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A B S T R A C T   

Water resources have always played an important role in ensuring industrial and agricultural production, as well 
as maintaining ecosystem security in the Mongolian Plateau (MP), a typical arid to semi-arid region. Previous 
studies have reported the considerable shrinkages of surface water bodies affected by intense human disturbance 
in the MP before 2010. However, it is still unclear about the effects of those key ecological restoration efforts (e. 
g., the construction of ecological civilization since 2012) on water resources in the recent decade. Here, using all 
the available Landsat-5/7/8 surface reflectance observations, a robust water mapping algorithm based on 
spectral indices and thresholds, and the Google Earth Engine (GEE) cloud computing platform, we examined the 
changes in surface water area (SWA) in the MP during 1991–2021. In addition, based on the Gravity Recovery 
and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) Mascon data products, we investigated 
the inter-annual variability and trends of terrestrial water storage (TWS) from 2002 to 2021. We found that SWA 
experienced remarkable increases (85.5 km2/yr) since 2009 after continuous shrinkage of surface water bodies 
(-205.9 km2/yr) for over 20 years, in which Inner Mongolia played a dominant role in the recovery of SWA (72.2 
km2/yr). Also, TWS had undergone continuous decline before 2012 and fluctuating rebound after that. The most 
significant recovery of TWS mainly happened in the northern part of the MP. Quantitative attribution analyses 
showed that the key ecological restoration projects in China, especially the construction of ecological civilization 
since 2012, were the major drivers for the recovery of surface and terrestrial water resources. While previous 
studies reported the considerable decline of surface water resources induced by human activities in the MP since 
the 1990s, our research provided gratifying satellite evidence for the significant recoveries of surface and 
terrestrial water resources in the plateau during the past decade under the influence of ecological restoration 
efforts.   

1. Introduction 

Water resources are extremely critical for ensuring human life, 
agricultural and industrial production, as well as maintaining regional 

ecosystem stability and achieving sustainable development goals (SDGs) 
in the Mongolian Plateau (MP), which geographically includes Inner 
Mongolia in China and Mongolia and is a typical region with arid and 
semi-arid climate condition (Bao et al., 2019; Liu et al., 2022b). Surface 
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water area (SWA) and terrestrial water storage (TWS) are two crucial 
indicators of the overall status of regional water resources, which can be 
measured by different kinds of satellites in orbit. Previous studies (Tao 
et al., 2015; Zhou et al., 2019) had revealed the continuous decline of 
areas of surface water bodies mainly represented by these widely 
distributed lakes and wetlands in the whole MP from the late 1980s to 
around 2010, which was mainly caused by intense human disturbance 
(e.g., coal mining and overgrazing) and attracting much attention from 
governments and scientists. With the implementation of ecological 
civilization construction in China since 2012 (Wang et al., 2021), peo
ple’s awareness of protecting ecology and the environment had 

strengthened, which might alleviate the deterioration of water resources 
in the MP. However, studies that focused on the dynamics of water re
sources in the MP from the both perspective of the areas of surface water 
bodies and total water storage are still limited so far, hindering our 
understanding of the completely changing processes of water resources. 
Therefore, updated and comprehensive pictures of the spatial patterns, 
long-term variations, and trends of SWA and TWS are extremely 
important for sustainable water management under anthropogenic dis
turbances and the earth’s changing climate. 

Surface water refers to these water bodies on the earth’s surface, 
such as rivers, streams, lakes, reservoirs, wetlands, etc. They are always 

Fig. 1. Geographical location of the Mongolian Plateau (MP) and different land cover types within the region.  

Fig. 2. Statistics of Landsat observation numbers in the MP. (A) Spatial distribution of the good-quality Landsat observation in the MP during 1984–2021. (B) 
Cumulative percentage of Landsat pixels with the good-quality observation numbers of [0,5), [5,10), [10,20), [20,40), [40,80), [80,150), respectively, in MP during 
1984–2021. (C) The yearly average number of good-quality Landsat observations in MP during 1984–2021. (D) Number of Landsat pixels with the good-quality 
observation of [0,600), [600,1200), [1200,1800),[1800,2400), [2400,3000). 
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changing due to the combined effects of various natural and anthropo
genic drivers (Ma et al., 2010; Zhu et al., 2020). With the rapid devel
opment of remote sensing technology, including the improvement of the 
spatial–temporal resolutions of satellite images and data processing 
capability, remote sensing has become more significant in measuring the 
dynamics of surface water bodies over large region scales with higher 
repeat frequencies (e.g., 8 days using time series Landsat observations) 
(Huang et al., 2018; Zou et al., 2018), especially in these distant 
mountainous areas (Zhang et al., 2017; Zhang et al., 2020a). Instead of 
traditional surveying methods, the more accurate and rapid extraction 
of surface water bodies based on remote sensing images has gradually 
become the mainstream approach and saved a lot of manpower and time 
(Chen and Zhao, 2022; Pekel et al., 2016; Song et al., 2018; Wu et al., 
2023; Zou et al., 2017). In previous studies, various algorithms and 
remote sensing data sources have been used to extract surface water 
bodies, and their resultant single-period static maps have been released, 
such as the global water body data for 2000 with 30 m spatial resolution 
(Verpoorter et al., 2014) and for 2010 with 3 arc second resolution 
(Yamazaki et al., 2015). However, affected by the limitation of storing 
and processing massive remote sensing data, these static data products 

hinder our capability to precisely track the complete change processes of 
surface water bodies. Luckily, the development of cloud storage and 
cloud computing platforms (e.g., Google Earth Engine, GEE) promotes 
the emergence of time-series data products of surface water bodies, with 
the typical example of the 30 m global water body data set generated by 
the Joint Research Centre (JRC) in 2016 using all these Landsat top-of- 
atmosphere (TOA) reflectance data (Pekel et al., 2016). However, in this 
data set, there was a lack of surface water bodies in the MP before 2000. 
This is because the Landsat archive stored in the United States Geolog
ical Survey (USGS) Earth Resources Observation and Science (EROS) 
Center was dynamics due to the implementation of the Landsat Global 
Archive Consolidation (LGAC) effort which aimed to consolidate the 
Landsat data archives of all international ground stations to significantly 
increase the frequency of observations (Zhou et al., 2022; Zhu et al., 
2019). Therefore, the Landsat archive might be less complete in 2016, 
when the JRC data was generated, than it was currently (Zhou et al., 
2022). 

Compared with TOA data, the Landsat surface reflectance (SR) data 
can eliminate the influence of the atmosphere and reflect the surface 
conditions more realistically (Dong et al., 2016), therefore, using SR 
data to extract surface water bodies would be more advantageous than 
TOA data. So far, there is no study based on the Landsat SR data to draw 
the annual map of all surface water bodies in the MP from the 1990 s to 
the present, which leads to the continuous monitoring of water resources 
in the MP being extremely limited. But now, a series of cloud computing 
platforms such as Google Earth Engine (GEE) were becoming more and 
more mature in technology, the improvement of data processing capa
bilities and the updated iteration of classification algorithms (Tamimi
nia et al., 2020), combined with the support of high-precision remote 
sensing images (e.g., Landsat SR data), had created good conditions for 
accurate identification of land cover types (Bian et al., 2020; Duan et al., 
2020; Johnson, 2019; Liu et al., 2018). In previous studies, based on GEE 
and Landsat SR data, researchers had done some fruitful research on 
surface water dynamic changes at both national and regional scales 
(Wang et al., 2020; Zhou et al., 2022; Zou et al., 2018). 

TWS is composed of all the detected or undetected water components 
on the earth, which is an important indicator of climate change. Tradi
tional ways of detecting TWS were roughly estimated by manual mea
surement or hydrological model simulation, these methods were not 
only time-consuming and laborious but also limited by many factors and 
had low accuracy (Li et al., 2020a). The GRACE satellite is a satellite 
product jointly developed by the National Aeronautics and Space 
Administration (NASA) of the United States and the German Aeronautics 
Center and since its launch in March 2002, it has been widely used in 
research to monitor changes in TWS (Li et al., 2020a; Pokhrel et al., 
2021; Wang et al., 2018; Zhao et al., 2021; Zhu et al., 2023). The 
evaluation of the water resources environment in the region based on 
gravity satellite data is the mainstream idea of current research, but this 
evaluation method was not comprehensive. Surface water is the main 
component of TWS (Wang et al., 2020), so the change of SWA could 
dominate the change of TWS (Getirana et al., 2017). However, up to 
now, the quantitative and comparative studies on the changes of SWA 
and TWS in the MP were very limited. 

In this study, we intended to provide a holistic illustration of the 
continuous changes in SWA from 1991 to 2021 and TWS from 2002 to 
2021 on the MP, and quantitatively analyze the driving forces of their 
changes. First of all, using all the available Landsat SR data, the water 
indices- and thresholds-based water mapping algorithm, and the GEE 
cloud computing platform, we generated the annual maps of year-long 
surface water bodies with a spatial resolution of 30 m in the MP. Sec
ondly, we applied the GRACE and GRACE-FO mascon data sets to 
explore the spatial and temporal changes of TWS from 2002 to 2021. 
Finally, we qualitatively and quantitatively analyzed the drivers of 
changes in SWA and TWS by fully considering the effects of climate 
change and human activities. This study is expected to provide critical 
information for decision-makers and water managers who strive to 

Table 1 
Confusion matrix for accuracy assessment of surface water maps in 1991, 2000, 
2010, and 2020. The figures in the confusion matrices represent the total 
number of Landsat pixels.  

1991 

Classification Ground reference Total User accuracy 

Water Non-water 

Water 9718 172 9890 98.26 % 
Non-water 1032 23,478 24,510 95.79 % 
Total 10,750 23,650 34,400 Overall accuracy = 96.5 

% 
Producer 

accuracy 
90.4 % 99.27 %  Kappa Coefficient = 0.92  

2000 
Classification Ground reference Total User accuracy 

Water Non- 
water 

Water 9030 516 9546 94.59 % 
Non-water 559 24,295 24,854 97.75 % 
Total 9589 24,811 34,400 Overall accuracy = 96.9 

% 
Producer 

accuracy 
94.17 % 97.92 %  Kappa Coefficient = 0.92  

2010 
Classification Ground reference Total User accuracy 

Water Non- 
water   

Water 8600 946 9,546 90.09 % 
Non-water 344 24,510 24,854 98.62 % 
Total 8944 25,456 34,400 Overall accuracy = 96.3 

% 
Producer 

accuracy 
96.15 % 96.28 %  Kappa Coefficient = 0.90  

2020 
Classification Ground reference Total User accuracy 

Water Non- 
water 

Water 8858 645 9503 93.21 % 
Non-water 86 24,811 24,897 99.65 % 
Total 8944 25,456 34,400 Overall accuracy = 97.9 

% 
Producer 

accuracy 
99.04 % 97.47 %  Kappa Coefficient = 0.95  
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achieve the coordinated development of water resource protection and 
social economy in the MP and offer a typical reference to analyze the 
changes of water resources in other similar regions around the world. 

2. Materials and methods 

2.1. Study area 

The MP is in the inner Eurasian continent, mainly including the Inner 
Mongolia Autonomous Region in China and Mongolia (Fig. 1). The MP is 
rich in land cover types (John et al., 2013), of which grassland accounts 
for more than 50 % of its total areas (Qiang et al., 2019). It is a vital 
pasture area in Northern Asia for herding cattle and sheep, so pasto
ralism in the region is particularly developed and occupies a high pro
portion of the regional economic composition. Although the MP is a 
typical arid and semi-arid zone, there are still a large number of famous 
lakes (e.g., Lake Hulun in Inner Mongolia and Lake Hovsgol in 
Mongolia) and rivers (e.g., Yellow River in Inner Mongolia and Selenga 
River in Mongolia) with different sizes distributed in the region (Liu 
et al., 2022a; Wen et al., 2022). The sensitivity of MP to climate change 
determines that these surface water bodies in the region play an 

extremely important role in regulating internal ecological stability and 
ensuring people’s production and living. 

2.2. Data 

2.2.1. Landsat imagery 
As a widely used satellite data source for research related to geo

sciences, the Landsat archive has collected a large number of medium- 
resolution images through its family sensors (Loveland and Dwyer, 
2012; Wulder et al., 2016). Among them, all these available 30-m res
olution imagery from Landsat 5 (1984–2011), Landsat 7 (1999–2021), 
and Landsat 8 (2013–2021) were applied to the current research. These 
data stem from the United States Geological Survey (USGS) and can be 
obtained from the Google Earth Engine (https://earthengine.google. 
com), which provides multi-source geospatial data, advanced algo
rithms, and high-performance computing power to multidisciplinary 
research at different scales from regional to global (Amani et al., 2020; 
Gorelick et al., 2017). Compared to traditional image processing tools (e. 
g., ENVI), GEE can quickly batch process massive remote sensing images 
in a very short time. To verify the availability of the Landsat 5/7/8 
Collection 1 Tier 1 SR image sets and determine the available time 

Fig. 3. Workflows for generating annual maps of year-long surface water bodies in the MP from 1991 to 2021.  
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interval for this study since the launch of the Landsat satellite in 1984, 
here, we have counted the annual numbers of good-quality Landsat 
observations in the MP from 1984 to 2021 by filtering those pixels of 
clouds, cloud shadows, snow, and terrain shadows. Among these bad- 
quality observations, clouds, cloud shadows, and snow were detected 

and removed using the quality assurance (QA) band in each image 
which was generated by the CFmask method (Foga et al., 2017). The 
terrain shadows were removed by using the combination of the two 
angles of solar azimuth, zenith, and digital elevation model (DEM) from 
the Shuttle Radar Topography Mission (SRTM) (Zhou et al., 2022). We 

Fig. 4. Surface water frequency maps for the MP and changes in SWA under different thresholds. (A) Water frequency map in 2021; (B) Water frequency map during 
1991–2021; The enlarged views below are lakes of Khyargas (1) and Hulun (2), respectively; (C) Annual areas of surface water bodies in the MP from 1991 to 2021 
according to different frequency thresholds. 

Fig. 5. Spatial distributions of the 800 areas of interest (AOIs) for accuracy assessment of these surface water maps for the MP.  
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have conducted quantitative analyses on the availability of Landsat data 
to see whether there are sufficient good-quality Landsat observations to 
support retrospective and annual monitoring of surface water bodies on 
the MP since 1984. The results indicated that the Landsat pixels with 
zero good-quality observation in a year accounted for 24.5 % on average 
from 1984 to 1990. The insufficient good-quality Landsat observations 
restricted the generation of annual maps of surface water bodies on the 
MP before 1991. And there were enough good-quality Landsat obser
vations to support conducting inter-annual monitoring of the dynamics 
of surface water bodies across the whole MP from 1991 to 2021, which 
was reflected by that the Landsat pixels with at least 10 good-quality 
observations annually accounted for over 99.9 % of the total pixels 
(Fig. 2). Therefore, we used all these Landsat 5/7/8 Collection 1 Tier 1 
SR images (~180,000 images, ~ 176 TB) in the MP during 1991–2021 
to examine the inter-annual variations and trends of SWA. 

2.2.2. GRACE satellite data 
The GRACE/GRACE Follow-On (GRACE-FO) Release-06 monthly 

mascon data products generated from NASA Jet Propulsion Laboratory 
(JPL) were used to track the inter-annual variations and trends of TWS in 
the MP during 2002–2021. The grid size and temporal resolution of 
these data sets are 0.5 arc degree and monthly. The GRACE/GRACE-FO 
mascon data provide a monthly gravity anomaly compared to the 
2004–2010 time-average baseline, indicating the vertical mass devia
tion of water (Chambers et al., 2010; Chambers and Bonin, 2012). 

Considering that there were missing GRACE/GRACE-FO TWS values in 
some months, we applied a linear interpolation algorithm to fill the 
missing data according to the data of the previous and next months 
(Zhou et al., 2023). Then, the annual TWS anomalies of each grid were 
derived by averaging the GRACE/GRACE-FO values from the 12 months 
in each year. 

2.2.3. Data on watershed extents and land covers 
The watershed boundaries of the MP were derived from the Hydro

BASIN data product, which was developed by the World Wildlife Fund- 
US (WWF) (Lehner and Grill, 2013). The HydroBASIN follows the 
Pfafstetter codes concept and provides the boundaries of global water
sheds from Level 1 to Level 12. In this study, we used the Level 5 
watershed boundary data of HydroBASIN which divided the whole MP 
into 117 drainage basins to compare and analyze the changing trends of 
SWA and TWS at the watershed scale of MP. The GlobalLand 30 data 
product with 30-m resolution was used to examine the spatial patterns of 
different kinds of land covers in the MP. It has three editions of data in 
2000, 2010, and 2020, including the first-level land cover types of 
cropland, forest, grassland, and water bodies, etc. (Jun et al., 2014). The 
global land cover data set was produced using multi-source remote 
sensing data, including satellite imagery from Landsat family sensors (i. 
e., TM, ETM+, and OLI) and China Environmental Disaster Reduction 
Satellite (HJ-1). In addition, the 2020 version of the data also used GF-1 
multi-spectral images with a spatial resolution of 16 m. This paper used 

Fig. 6. Changes in SWA over the MP. Inter-annual variations and trends of SWA in the MP (A), Inner Mongolia (B), and Mongolia (C) from 1991 to 2021; Spatial 
patterns of linear trends of SWA in the MP during different periods of 1991–2021 (D), 1991–2009 (E), and 2009–2021 (F). The symbol “+” in each pixel indicated 
that the linear trends reached a statistical significance level of p-value < 0.05. 
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the data of Edition 2020 of GlobalLand 30 to investigate the spatial 
distribution of major land cover types in the study area. 

2.2.4. Climatic data 
The annual mean temperature (AMT) and annual precipitation (AP) 

are two climate-driving factors that may have potential impacts on 
regional water resources (e.g. the increase in AMT will affect the rate of 
surface evapotranspiration, thereby accelerating the consumption of 
water resources) (Condon et al., 2020; Gbetkom et al., 2023). Two kinds 
of climatic data sets were used to examine the changes in AP and AMT, 
namely: the TerraClimate and the fifth-generation European Centre for 
Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis 
(ERA5). The TerraClimate is a global and monthly climatic dataset with 
a spatial resolution of 0.5 arc degree and it used climatically aided 
interpolation, with most of the information of temperature, precipita
tion, and water vapor pressure inherited from CRU Ts4.0 and the Jap
anese 55-year Reanalysis (JRA55) (Abatzoglou et al., 2018; Harris et al., 
2020). The ERA5 data set provides hourly estimates of atmospheric, 
terrestrial, and marine climate variables, compared with previous 
products, ERA5 has greatly improved in resolution, number of variables, 
and other aspects, and is now selected by more researchers (Hongyuan 
et al., 2021). To reduce the uncertainties, we used the average of the two 
climatic data sets to investigate the trends of AP and AMT in the MP from 
1991 to 2021. 

2.3. Method 

2.3.1. Generation of Landsat-based surface water maps 
This study used the indices- and threshold-based automated water 

mapping algorithm to detect surface water bodies in satellite images. 
The main indexes in the algorithm include the modified Normalized 
Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), 
and Normalized Difference Vegetation Index (NDVI). The following 
equations introduced the calculations of the above indices using 
different spectral bands: 

mNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(1)  

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(2)  

EVI = 2.5 ×
ρNIR − ρRed

1.0 + ρNIR + 6.0ρRed + 7.5ρBlue
(3)  

where ρred, ρgreen, ρBlue, ρNIR, ρSWIR1 are the surface reflectance of the 
bands of red, green, blue, near-infrared, and shortwave-infrared-1 
(SWIR1) in Landsat imagery. According to our previous studies (Wang 
et al., 2020; Zhou et al., 2022; Zou et al., 2018), the rule mNDWI > NDVI 
or mNDWI > NDVI can be used to filter those pixels with stronger water 
signals than vegetation ones, while EVI < 0.1 can remove those pixels of 

Fig.7. Inter-annual variabilities of surface water bodies with varying sizes in the MP from 1991 to 2021. Inter-annual variations and trends of large (≥1 km2) water 
bodies in the MP (A), Inner Mongolia (B), and Mongolia (C) from 1991 to 2021. Inter-annual variations and trends of small (<1 km2) water bodies in the MP (D), 
Inner Mongolia (E), and Mongolia (F) from 1991 to 2021. 
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vegetation and the mixes of water and vegetation. Therefore, we used 
Eq. (4) which introduced the relationships between the water and 
vegetation indices to identify if a given pixel was water or not. 

EVI ​ < ​ 0.1 ​ and ​ (mNDWI ​ > ​ NDVI or mNDWI ​ > ​ EVI) (4)  

After that, the frequency of water occurrence for a given pixel in one 
certain year was calculated using the following equation: 

WF =

∑N
i= 1Wi

N
× 100% (5)  

where N represents the number of Landsat observations with good 
quality in the current year; Wi denotes whether the target pixel was 
surface water for the i-th observation, with “0″ indicating non-water and 
“1” indicating water; WF is the water frequency of the target pixel in that 
year. According to the above principles, we generated the annual fre
quency maps of surface water occurrence in the MP from 1991 to 2021. 
Fig. 4A and B showed the spatial distributions of water occurrence fre
quencies in the MP in 2021 and 1991–2021. Annual areas of surface 
water bodies greatly varied under different water frequency thresholds. 
To determine the most appropriate water frequency threshold for 
extracting year-long surface water bodies, we compared annual areas of 
surface water bodies according to different thresholds with the areas of 
year-long surface water bodies from the JRC data set (Fig. 4C), and 
found that annual areas of surface water bodies with the frequencies 
higher than or equal to 0.75 in our data set were the closest to the results 
from JRC data product. Therefore, we applied the threshold of 0.75 to 
separate year-long water bodies from annual water frequency maps, 
which was also consistent with our previous studies (Zhou et al., 2022; 
Zou et al., 2017; Zou et al., 2018). 

2.3.2. Accuracy assessment 
This study used confusion matrices to assess the accuracy of the 

water mapping method. Specifically, a total of 800 areas of interest 
(AOIs) with a radius of 100 m, covering more than 34,400 Landsat 
pixels, across the whole MP, were randomly generated for visual inter
pretation. The very high-resolution (VHR) satellite images from Centre 
National d’Etudes Spatiales (CNES)/Astrium at the platform of Google 
Earth Pro were used to interpret the types of AOIs. To ensure that the 
reference images are consistent with the resultant water body maps in 
time, we selected and interpreted the VHR images within the AOIs in the 
same year as the generated surface water body maps. The spatial dis
tributions of the 800 AOIs (221 water AOIs and 579 non-water AOIs) 
were shown in Fig. 5. We calculated the overall accuracy of the water 
body maps for 1991, 2000, 2010, and 2020 by generating the confusion 
matrices using ENVI 5.6 platform, and found that the overall accuracy of 
the water body maps for the four years were 96.5 % (kappa coefficient of 
0.92), 96.9 % (0.92), 96.3 % (0.90), and 97.9 % (0.95), respectively 
(Table 1). The above analyses indicated that the accuracy of these water 
body maps from our proposed method was reliable and could support 
the continuous monitoring of changes in SWA in the MP. 

2.3.3. Analyses of spatial and temporal dynamics of SWA and TWS 
We investigated the spatial and temporal changes in SWA and TWS at 

both the pixel and regional scales. Firstly, the pixels with water fre
quencies [75 %, 100 %] were considered year-long surface water bodies 
and marked as 1, while those below 75 % were considered seasonal 
water bodies or non-water and marked as 0. Based on the annual 30-m 
binary maps of year-long surface water bodies of the MP from 1991 to 
2021 (Fig. 3), we aggregated them into 0.5 arc degrees to generate 
annual SWA percentage maps. Secondly, we applied the Theil-Sen slope 
estimator and Mann-Kendall test method to calculate the slope of annual 
SWA and statistical significance level for each pixel, to derive the 

Fig. 8. Trends of SWA in the MP at the scale of the administrative region. (A) Annual mean SWA (ha) per unit land (km2) and the standard deviation from 1991 to 
2021; (B) Inter-annual variations and linear trends of SWA from 1991 to 2021; (C-D) Spatial patterns of linear trends of SWA from 1991 to 2009; (E-F) Spatial 
patterns of linear trends of SWA from 2009 to 2021. 
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resultant map of linear trends of SWA. The Theil-Sen slope estimator has 
the advantages of high computation efficiency and insensitivity to 
measurement error and outlier data. The Mann-Kendall test method is a 
non-parametric test model, which does not require the measurement 
values to follow the normal distribution, nor does it require the changing 
trend to be linear. Most importantly, it is almost free from the influence 
of missing values and abnormal values (Matthias et al., 2015; Yang et al., 
2019). Finally, we explored the inter-annual variability and linear trends 
of SWA in the MP at a regional scale based on Python 3.9 programming 
language. Similarly, we examined the inter-annual variability and linear 
trends of TWS, AP, and AMT at the pixel and regional scales. 

2.3.4. Driver analyses of SWA and TWS dynamics 
Previous researches (Tao et al., 2015; Zhang et al., 2017; Zhou et al., 

2019) had recorded the shrinkage of surface water bodies in the MP 
since the early 1990s and attributed their drivers to intense human ac
tivities (i.e., coal mining, overgrazing, etc.), which were consistent with 
our current study. Considering that the most interesting finding in this 
paper was that SWA and TWS experienced significant recovery processes 
over the past decade following long-term shrinkage and depletion, here, 
we mainly focused on the driving factors of the recoveries of SWA and 
TWS. Based on the change analyses of SWA and TWS, we found that the 
increases of SWA in the MP over the past decade mainly happened in 
Inner Mongolia, and we identified two hotspots with the most rapid 
expansion of SWA. Firstly, for each hotspot, the timeline of the 

implementation of various ecological and environmental conservation 
policies was generated, and the inflection points of inter-annual varia
tions of SWA and TWS were matched with the times of the imple
mentation of major policies and regulations. Secondly, in view of the 
fact that ecological protection efforts would directly affect soil erosion 
areas in such an ecologically sensitive region, we investigated the 
changes in soil erosion treatment areas in each hotspot and analyzed the 
correlation between SWA and the areas of soil erosion treatment. Annual 
areas of soil erosion treatment were derived from the Bulletin of Soil and 
Water Conservation (https://slt.nmg.gov.cn/) issued by the Water 
Conservancy Department of Inner Mongolia. Finally, we applied the 
partial correlation model to quantitatively analyze the effects of each 
driving factor on SWA changes, in which AP and AMT were used to 
measure climate change, while the soil erosion treatment areas were 
selected as the index to reflect the influences from human activities. 

3. Results 

3.1. Inter-annual variations and trends of SWA from 1991 to 2021 

Overall, MP experienced a considerable decline in SWA (-205.92 
km2/yr) before 2009 while continuous increases with a rate of 85.50 
km2/yr after that (Fig. 6A), in which Inner Mongolia dominated the 
trends of changes in SWA in the MP. Specifically, although the inter- 
annual variations and trends of SWA in Inner Mongolia were similar 

Fig. 9. Inter-annual variations and trends of TWS over the MP (A), Inner Mongolia (B), and Mongolia (C) from 2002 to 2016. Spatial change pattern of the TWS in 
MP from 2002 to 2016 (D), 2002 to 2011 (E), and 2007 to 2016 (F). The “+” symbol in each pixel indicated that the linear trends reached a statistical significance 
level of p-value < 0.05. 
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to those of Mongolia (Fig. 6A and B), the decreasing rate of SWA was 
higher in Inner Mongolia (-117.51 km2/yr) compared with Mongolia 
(-88.31 km2/yr), agreeing well with previous studies (Tao et al., 2015; 
Zhou et al., 2019). In addition, we found an interesting phenomenon 
that Inner Mongolia also dominated the increases in SWA in the MP in 
the past decade. From 2009 to 2021, SWA showed a significantly (p <
0.01) and continuously increasing trend in Inner Mongolia, from 
− 857.05 km2/yr to 273.62 km2/yr, at a rate of 72.21 km2/yr. However, 
the rate of changes in SWA in Mongolia was much smaller, and the trend 
was not statistically significant (13.30 km2/yr, p = 0.18). To explore the 
dynamics of surface water bodies with different sizes, we divided the 
surface water bodies on the MP into two categories of small (<1 km2) 
and large (≥1 km2) ones, and investigated the inter-annual variations 
and trends of their areas from 1991 to 2021 (Fig. 7). We found that SWA 
changes in Inner Mongolia were dominated by large water bodies 
(-91.15 km2/yr from 1991 to 2009 and 61.61 km2/yr from 2009 to 
2021) (Fig. 7 B and E), while those in Mongolia were dominated by small 
ones (-46.96 km2/yr from 1991 to 2009 and 8.83 km2/yr from 2009 to 
2021) (Fig. 7 C and F), no matter for the first period with surface water 
shrinkage or the last period with surface water expansion. 

By examining the spatial patterns of linear trends of SWA, we found 
that the number of pixels with significantly decreasing trends (161) of 
SWA was more than that with increasing trends (598) from 1991 to 2021 

(Fig. 6D). However, when we focused on different periods, the changes 
in SWA were mainly characterized by downward trends before 2009 
(Fig. 6E), while they were mainly upward trends after 2009 (Fig. 6F). 
Specifically, among the 1421 0.5◦ × 0.5◦ pixels in the map of linear 
trends of SWA during 1991–2009, 618 pixels (43.49 %) experienced 
significantly decreasing trends in SWA while 154 pixels (10.83 %) 
experienced significantly increasing trends (Fig. 6E). From 2009 to 
2021, the number of pixels experiencing increasing trends in SWA 
accounted for 54.40 % (773), in which the upward trends of SWA of 204 
pixels were significant. However, only 112 pixels (7.88 %) experienced 
significantly decreasing trends in SWA (Fig. 6F). In addition, we found 
that the most rapid increases in SWA occurred in the southern parts 
(cities of Ordos, Bayannur, and Baotou) and northeastern parts 
(Hulunbuir City) of Inner Mongolia, which were the two hotspots of 
SWA recovery identified in this study (Fig. 6F). 

At the administrative district scale (prefectural level for Inner 
Mongolia and provincial level for Mongolia), we found that the spatial 
distributions of surface water resources were uneven in the MP (Fig. 8A). 
Overall, SWA was the largest in the western parts of the plateau where 
many famous lakes (e.g., Lake Uvs and Lake Hovsgol, etc.) gather, fol
lowed by the eastern and central parts. The average annual SWA (ha) per 
unit land area (km2) in a district during 1991–2021 varied from 0.003 
ha/km2 in Omnogovi Province to 6.6 ha/km2 in Uvs Province in 

Fig. 10. Inter-annual variations and trends of SWA and TWS at different spatial scales.  
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Mongolia. The standard deviation of SWA per unit land area in a district 
ranged between 0.004 ha/km2 in Dornogovi Province in Mongolia and 
1.05 ha/km2 in Wuhai City in Inner Mongolia. Inter-annual changes in 
SWA in the MP during 1991–2021 showed divergent trends. Among the 
34 administrative districts in the MP, 22 districts experienced signifi
cantly downward trends of SWA, ranging from − 19.17 km2/yr in Xilin 
Gol League in Inner Mongolia to − 0.06 km2/yr in Ulaanbaatar in 
Mongolia. Only 6 districts located in the southern parts of Inner 
Mongolia underwent significant increases in SWA, namely: Erdos, 
Byannur, Hohhot, Baotou, Wuhai, and Alxa League which included one 
of the two hotspots of SWA recovery identified in this study (Ordos City 
+ Bayannur City + Baotou City). However, when we focused on the 
trends of SWA in different periods, the clearly contrary trends of SWA 
before and after 2009 could also be found. From 1991 to 2009, 20 dis
tricts experienced significantly decreasing trends of SWA, with which 
the most rapid decline of SWA occurred in Hulunbuir City of Inner 

Mongolia (Fig. 8C and D); while only 13 districts underwent signifi
cantly increasing trends. (Fig. 8C and D). Conversely, SWA showed 
significantly increasing trends in 10 districts from 2009 to 2021, with 
the most rapid increase of SWA in Hulunbuir City, too (Fig. 8E and F). 
And no administrative region showed a significant downward trend. 

3.2. Inter-annual variations and trends of TWS from 2002 to 2021 

Similar to the variations of SWA, TWS in the MP had undergone two 
stages of changes, namely: continuous and significant decline before 
2012 and fluctuating rebound after that (Fig. 9A-C). For the first phase, 
TWS significantly (p < 0.01) and continuously decreased in the entire 
MP, Inner Mongolia, and Mongolia, with rates of − 4.25 mm/yr, − 5.41 
mm/yr, and − 3.32 mm/yr, respectively. The decreasing trends of TWS 
had been alleviated in the MP since 2012. Although TWS decreased 
again after 2013, there was a continuous and sharp increase in TWS 

Fig. 11. Timelines of major ecological protection policies and the responses of inter-annual variations of SWA and TWS on them. (A) Retrieved major ecological 
protection policies in the cities of Ordos, Bayannur, and Baotou since 1990; Inter-annual variations of SWA (B) and the areas of soil erosion treatment (C); (D) Linear 
trends between SWA and the areas of soil erosion treatment; (E) Retrieved major ecological protection policies in Hulunbuir City since 1990; Inter-annual variations 
of SWA (F) and the areas of soil erosion treatment (G); (H) Linear trends between SWA and the areas of soil erosion treatment. 
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during 2018–2021 (MP: from − 1.76 mm to 1.17 mm; Inner Mongolia: 
from − 2.96 mm to 0.78 mm; Mongolia: from − 0.90 mm to 1.46 mm;), in 
which the value of 2021 was higher than that of 2013 and rebounded to 
the level around 2005 (Fig. 9A-C). 

To have a better understanding of the spatial variability of TWS 
changes in the MP, we investigated the spatial patterns of linear trends 
of TWS during 2002–2016 (Fig. 9 D-F). We found that among the 1269 
pixels with a grid size of 0.5 × 0.5 arc degree, there were 653 pixels 
(51.46 %) experiencing significant declines in TWS, mainly located in 
the southern parts of the MP (i.e., Inner Mongolia). In addition, the re
gions with the most rapid loss of TWS occurred in the southern parts of 
Inner Mongolia, covering 126 pixels (Fig. 9D). However, the spatial 
patterns of linear trends of TWS greatly varied in different periods. 
Similarly, we chose 2002–2012 as the first phase of TWS changes 
(Fig. 9E). The results showed that the number of GRACE pixels with 
significant declines in TWS increased to 895 (70.53 %), while no pixel 
experienced significant increases in TWS. Compared with the results of 
2002–2016, those new pixels with significant loss of TWS during 
2002–2012 were mainly concentrated in the eastern, northern, and 
western parts of the MP. In addition, the regions with the most serious 
loss of TWS expanded northward to Xilin Gol League and Hulunbuir City 
in Inner Mongolia, and Dornod Aymag in Mongolia. Conversely, the loss 
of TWS has been widely alleviated during the second phase of 
2007–2016 (Fig. 9F). The reason why we extended the start year period 
to 2007 was to ensure the reliability of statistical analyses with at least 
ten samples. We found that there were 714 pixels with TWS increases, in 

which 351 pixels experienced significant upward trends in TWS, mainly 
concentrated in the northern part of the MP. However, among these 
1269 pixels, 484 of them experienced significantly downward trends of 
TWS during 2007–2016. It was notable that Hulunbuir City experienced 
a significant recovery of TWS in the later period, which was also one of 
the hotspots of SWA increases in this study. 

To further reveal the recovery of SWA and TWS in the MP during the 
later period (since ~ 2010) compared with the former one (before ~ 
2010), we investigated the spatial patterns of changing trends of SWA 
and TWS during 2002–2012 and 2007–2016 at the scales of an admin
istrative region, watershed, and pixel (0.5◦ × 0.5◦) (Fig. 10). From 2002 
to 2012, there were 10 administrative regions (or 34 watersheds and 295 
pixels) experiencing significant decreases in SWA, whereas SWA 
significantly increased in only 1 region (or 13 watersheds and 95 pixels) 
(Fig. 10A-C). Conversely, SWA showed significantly and continuously 
increasing trends in 8 regions (or 24 watersheds and 215 pixels) during 
2007–2016 (Fig. 10F-H); while only 2 regions (or 8 watersheds and 122 
pixels) experienced significant decreases in SWA. Similarly, we found 
that among the 34 administrative regions (or 117 watersheds) in the MP, 
25 regions (or 85 watersheds) experienced significantly downward 
trends of TWS during 2002–2012, while no region and watershed 
experienced increases in TWS (Fig. 10D-E). However, TWS showed 
significantly increasing trends in 12 regions (or 21 watersheds) which 
were mainly located in the northern parts of the plateau during the 
period (Fig. 10I-J). All these comparisons and analyses suggested the 
remarkable recovery of SWA and TWS in the MP during the past decade. 

Fig. 12. Changes in surface water of Lake Hulun. (A) Annual surface water extents of Lake Hulun from 1991 to 2021, represented by Landsat image composite using 
the three bands of NIR, Red, and Green. (B) Inter-annual variations of water area and height of Lake Hulun. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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3.3. ⋅Drivers of the recoveries of SWA and TWS 

Previous⋅studies⋅(Tao et al., 2015; Zhang et al., 2017; Zhou et al., 
2019) had documented the rapid shrinkage of widely distributed lakes in 
the MP before 2010 and attributed their drivers to intense human ac
tivities (i.e., coal mining, overgrazing, etc.), which further proved the 
reliability of our current findings that SWA showed significantly and 
continuously decreasing trends before 2009. Moreover, the most inter
esting finding in this study was that SWA and TWS experienced 
remarkable recoveries over the past decade following long-term 
shrinkage and depletion. Therefore, here, we mainly focused on the 
driving factors of the recoveries of SWA and TWS in the later period. 
Considering that Inner Mongolia dominated the raise of SWA in the MP 
after 2009, in which the two hotspots with the most rapid expansion of 
surface water bodies were identified in the southern (Ordos City +
Bayannur City + Baotou City) and northeastern (Hulunbuir City) parts, 
we quantitatively analyzed the driving factors of SWA increases in the 
two hotspots from the aspects of climate change and human activities. 

The southern parts of Inner Mongolia were the regions with serious 
desertification and soil erosion. Therefore, a series of key ecological 

restoration projects have been developed and implemented since the 
1990 s (e.g., returning farmland to forestland and grassland since 1999). 
Other important ecological projects implemented in the regions have 
been listed in Fig. 11A. Especially, China launched the construction of 
ecological civilization and rose it to a national strategy since 2012, 
greatly contributing to ecological environment treatment and the 
following restoration of wetlands and lakes (Fig. 11A). Fig. 11B showed 
the remarkable increases of SWA in the three administrative regions 
since 2012. Considering that soil erosion could significantly affect the 
changes in the spatial extents of surface water bodies (Wu et al., 2020), 
here, we selected the areas of soil erosion treatment as the major index 
to reflect the effects of ecological restoration efforts. In addition, we 
chose AP and AMT as indicators to measure climate change. Firstly, we 
found that annual areas of soil erosion treatment continuously increased 
since 2008 (Fig. 11C). Correlation analysis suggested that SWA was 
significantly (p < 0.01, R2 = 0.69) and positively correlated with the 
areas of soil erosion treatment (Fig. 11D). Secondly, the trends of AP and 
AMT were not obvious in these regions since 2008 (Fig. 13B and C), 
which suggested that climate change could not be the major drivers of 
SWA expansion. Thirdly, we found that interannual variations and 

Fig. 13. The time series of SWA in the first hotspot (A).Inter-annual variations of AMT (B) and AP (C) in the first hotspot (Ordos City + Bayannur City + Baotou City) 
from 1991 to 2020. Correlation and partial correlations between anthropogenic or climatic factors and SWA change in the first hotspot (D). Shown in orange, from 
bottom to top, is first the correlation between soil erosion treatment area (Erosion_treat_area) and SWA, followed by partial correlation r between Erosion_treat_area 
and SWA after controlling for the effect of AMT and AP. Shown in blue, from bottom to top, is first the correlation between AP and SWA, followed by partial 
correlations r between AP and SWA after controlling for the effect of Erosion_treat_area and AMT. Shown in red, from bottom to top, is first the correlation between 
AMT and SWA, followed by partial correlations r between AMT and SWA after controlling for the effect of Erosion_treat_area and AP. Each cross symbol indicates that 
the trend was not statistically significant (p ≥ 0.05). The time series of SWA in the second hotspot (E). Inter-annual variations of AMT (F) and AP (G) in the second 
hotspot (Hulunbuir City) from 1991 to 2020. Correlation and partial correlations between anthropogenic or climatic factors and SWA changes in the second hotspot 
which was similar to D (H). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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trends of SWA were not consistent with that of AP/AMT (Fig. 13A-C), 
and the correlation between SWA and AP/AMT was also not statistically 
significant (Fig. 13D). In addition, for the significant and positive cor
relation between SWA and the areas of soil erosion treatment, its cor
relation coefficient was still significant after adding AP or AMT to the 
partial correlation model. All these statistical analyses have proved that 
soil erosion treatment due to the implementation of ecological projects 
was of great significance to the recovery of SWA over the last decade. 

Similar to the southern parts of Inner Mongolia, Hulunbuir City had 
also experienced some major ecological restoration projects in the past 
years, such as the ecological water compensation project in 2009 and the 
construction of ecological civilization in 2012 (Fig. 11E). While SWA 
continuously decreased before 2012, we found that there was a rapid 
recovery process for SWA in the Hulunbuir City in the past decade 
(Fig. 10F). Taking Lake Hulun as an example, we found that the lake 
area continuously decreased before 2012 and then obviously increased 
(Fig. 12), which was highly consistent with the finding in previous study 
that the water level and storage of the lake experienced significant 
increasing trends after the continuous decline before 2012 (Fan et al., 
2021). The originally dried-up water bodies in the southern and north
eastern parts of Lake Hulun had gradually reappeared in people’s vision 
since 2012 (Fig. 12A). In addition, by utilizing lake surface height data, 
it was found that the inter-annual variations of SWA and water surface 
height were highly consistent with each other (Fig. 12B), which further 
validated the reliability of SWA change surveys in this study. 

In terms of the quantitative driver analyses of SWA changes in 
Hulunbuir City, the areas of soil erosion treatment were also selected to 
reflect the achievements of ecological protection, while AP and AMT 
were considered climate change factors. Firstly, a continuously 
increasing trend was observed for the areas of soil erosion treatment 
(Fig. 11G). Correlation analysis also showed a significant (p < 0.01, R2 

= 0.72) and positive correlation between the areas of surface water 
bodies and the soil erosion treatment areas (Fig. 11H). Secondly, the 
changing trends of AP and AMT were not consistent with that of SWA 
(Fig. 13E-G), and their correlations with SWA were also not statistically 
significant (Fig. 13H). Finally, after adding the influence of AMT or AP 
to the partial correlation model, the correlation coefficients between 
SWA and the areas of soil erosion treatment were still statistically sig
nificant (Fig. 13H). Therefore, it could be concluded that the ecological 
protection achievements of Hulunbuir City were remarkable and 
significantly contributed to the increases of SWA and following recovery 
of TWS in the region. Considering that the two hotspots showed sig
nificant and positive correlations between SWA and ecological restora
tion efforts, it could further support our view by comparing with the 
correlations in the regions where did not experience significant in
creases of SWA. By selecting two administrative regions (i.e., provinces 
of Dornod and Bayankhongor) in Mongolia where did not experience 
significant increases of SWA to conduct the controlled experiment, we 
found that the trends of SWA and ecological restoration efforts were not 
consistent with each other and their correlations were not statistically 
significant in these two regions (see Text S1 and S2, Figs. S1 and S2 for 
detailed information). All these statistical analyses proved that ecolog
ical restoration efforts in typical regions (e.g., Hulunbuir in Inner 
Mongolia) greatly contributed to the local SWA recovery. 

4. Discussion 

4.1. Implications of SWA and TWS recovery in the MP 

As one of the famous plateaus in Asia, the MP plays a vital role in 
regulating climate in northern Asia (Liu et al., 2013; Luo et al., 2021; 
Zhang et al., 2020b). The plateau possesses a large number of surface 
water bodies (e.g., lakes and wetlands) with different sizes, which are of 
great significance to ensuring human livelihood and industrial and 
agricultural production, as well as maintaining the stability of the 
ecosystem (Bai et al., 2021). However, due to the intense human 

disturbance (i.e., coal mining, overgrazing, etc.), the MP experienced 
rapid and continuous shrinkages of surface water bodies since the start 
of the 1990s, which has been proved by previous research and our 
current study (Tao et al., 2015; Zhou et al., 2019). In addition, the 
deterioration and decline of surface water bodies were more serious in 
Inner Mongolia compared to that in Mongolia. The lake shrinkage 
brought considerable threats to the regional environment and ecosys
tems, including dust release, water salinization, and waterfowl decline 
(Yafeng and Jiawen, 1990). To our joy, we found that the MP was 
experiencing a remarkable process of water resources recovery in the 
past decade, which was reflected in the significant and continuous in
creases of the SWA and TWS. The current study found that a series of 
national ecological restoration projects were the main driving factors to 
the rapid expansion of SWA in Inner Mongolia (Fu et al., 2023; Li et al., 
2020b). The significant recovery of water resources such as the expan
sion of the wetlands and lakes, provided a good growth substrate for 
aquatic plants and attracted a large number of organisms as habitats, 
which was of positive significance for enriching the diversity of local 
organisms and maintaining the stability of the ecological environment in 
the region (Mitsch et al., 2013). 

4.2. Comparison with previous researches 

Previous researches had focused on analyzing the changes in the 
numbers and areas of lakes greater than 1 km2 in the MP and conducted 
a quantitative analysis of the driving factors affecting the changes of 
these lakes (Tao et al., 2015; Zhang et al., 2017; Zhou et al., 2019). In 
this study, we expanded the monitoring targets to all these surface water 
bodies with sizes greater than or equal to 30 m × 30 m, and reveal that 
SWA changes were dominated by large water bodies in Inner Mongolia 
while small ones in Mongolia. Previous researches mainly reported the 
rapid shrinkage of these widely distributed lakes due to intense human 
activities such as coal mining and overgrazing (Tao et al., 2015; Zhang 
et al., 2017). Here, using all the available Landsat SR observations and 
the GEE cloud computing platform, we investigated the spatial and 
temporal changes of SWA at inter-annual scale and found the remark
able increases (85.50 km2/yr) of surface water bodies in the study area 
during the past decade induced by ecological restoration efforts 
following the long-term continuous shrinkages (− 205.9 km2/yr). 

Quantifying and comparing the changing trends of SWA and TWS 
can contribute to a deeper understanding of the feedback of the dy
namics of surface water bodies to regional water resources. Considering 
that surface water is one of the important components of TWS (36.08 ±
9.89 %) (Wang et al., 2020), the dynamics of surface water bodies al
ways play an important role in affecting the changes in TWS to a certain 
extent. For example, the increase of surface water is conducive to the 
recharge of groundwater, which will drive the following increases in 
TWS (Thomas et al., 2017). However, to date, few studies have sys
tematically quantified the spatial and temporal changes of SWA and 
TWS and analyzed their interconnections. With the help of GRACE and 
GRACE-FO mascon data sets, we examined the changes in TWS in the 
MP from 2002 to 2021, and found that the loss of TWS also have been 
alleviated over the past decade. In addition, in the current study, we 
identified Hulunbuir City as a typical region where experienced both 
increases in SWA and TWS in the past decade, suggesting that the 
expanding surface water bodies had a positive feedback on TWS. Finally, 
we qualitatively and quantitatively attributed the drivers of recoveries 
of SWA and TWS in the MP during the past decade to ecological resto
ration efforts in China. Therefore, this study not only reported the severe 
shrinkage of surface water bodies in the MP since the early 1990s, which 
was consistent with previous studies (Tao et al., 2015; Zhang et al., 
2017; Zhou et al., 2019), but also revealed the improvement of surface 
and terrestrial water resources induced by various ecological restoration 
efforts in China in the past decade. 
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4.3. Uncertainties and limitations in this study 

Together with previous researches (Pekel et al., 2016; Song et al., 
2018; Wang et al., 2020; Zhou et al., 2022), the continuous monitoring 
of SWA and TWS changes and the quantitative driver analyses in this 
study significantly contributed to the understanding of water resource 
status in the MP and promoted the practice for sustainable water man
agement and protection. However, we have to realize that there were 
still some uncertainties and limitations remained regarding to the data 
and methodologies used, which need to be improved in future studies. 
First of all, we used Landsat SR data with a spatial resolution of 30 m to 
annually map and detect the changes in surface water bodies, which 
significantly improved the accuracy compared to the researches that 
investigated the dynamics of SWA using MODIS data (Ji et al., 2018). 
However, those water bodies with sizes smaller than 30 m × 30 m, 
which were also important components of surface water resources and 
played a key role in regulating regional climate, might be neglected and 
missed. Secondly, despite that the pixels of snow, clouds, cloud shadows, 
and terrain shadows have been removed in remote sensing data pre
processing procedures, some bad-quality Landsat observations might 
still remain and could cause low-frequency noises in water frequency 
maps to a certain degree. However, what we focused on in this study 
were those pixels with water occurrence frequencies equal to or greater 
than 0.75, which could avoid the disturbance of low-frequency data 
noises. Finally, there will inevitably be differences between the results of 
remote sensing modeling and in-situ measurements regarding to tem
perature and precipitation. Therefore, we used two kinds of global 
climate data sets to depict the changing trends of AP and AMT to reduce 
the uncertainties of data. 

5. Conclusion 

Water resources are extremely critical for ensuring human livelihood 
and agricultural and industrial production, as well as maintaining 
regional ecosystem stability and achieving SDGs in the MP. Using all 
those good-quality Landsat observations, a robust water mapping algo
rithm based on water and vegetation indices and thresholds, and GEE 
cloud computing platform, we generated the annual maps of year-long 
surface water bodies with a spatial resolution of 30 m and depicted 
the complete changing processes of SWA in the MP during 1991–2021. 
In addition, using the monthly GRACE and GRACE-FO mascon data 
products with a spatial resolution of 0.5◦ produced by NASA JPL, we 
investigated the inter-annual variations and trends of TWS from 2002 to 
2021. We found that the MP experienced remarkable increases (85.50 
km2/yr) in SWA since 2009 after continuous surface water shrinkage 
(-205.92 km2/yr) for over 20 years, in which Inner Mongolia played a 
dominant role in the recovery of SWA (72.21 km2/yr). Similarly, TWS 
had undergone continuous decline before 2012 (MP: − 4.25 mm/yr; 
Inner Mongolia: − 5.41 mm/yr; Mongolia: − 3.32 mm/yr) and fluctu
ating rebound after that (MP: − 1.72 mm/yr to 1.17 mm/yr; Inner 
Mongolia: − 2.62 mm/yr to 0.78 mm/yr; Mongolia: − 0.15 mm/yr to 
1.46 mm/yr). The most significant recovery of TWS mainly happened in 
the northern part of the MP. Both qualitative and quantitative attribu
tion analyses showed that the key ecological restoration projects in 
China, especially the construction of ecological civilization since 2012, 
were the major drivers for the recovery of surface and terrestrial water 
resources. While previous studies reported the considerable decline of 
surface water resources induced by human activities in the MP since the 
1990s, our research provided gratifying satellite evidence for the sig
nificant recoveries of surface and terrestrial water resources in the 
plateau during the past decade under the influence of ecological resto
ration efforts. 
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