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Dear Editor,  24 

Advancements in high-throughput omics technologies, along with methodologies for 25 

integrating multi-omics datasets, have substantially enhanced the efficiency of 26 

identifying candidate genes in breeding (Gupta et al., 2019; Gusev et al., 2018). 27 

However, this process is often complex and laborious. To address this challenge, 28 

databases that integrate extensive data and enable convenient and efficient function 29 

genomics studies are being developed (Ma et al., 2021; Yang et al., 2023). Brassica 30 

juncea (B. juncea), commonly known as mustard, is an economically significant 31 

agricultural species for its diverse uses, including vegetables, resilient oilseeds, and 32 

distinctively flavored condiments (Yang et al., 2018). This diversity of applications has 33 

spurred the accumulation of substantial multi-omics data in fundamental research of 34 

mustard, yet there lacks a specialized platform to harness these data fully for mustard’s 35 

genetic improvement. Addressing this gap, we have developed BjuIR (Brassica juncea 36 

Information Resource, available at https://yanglab.hzau.edu.cn/BjuIR), integrating the 37 

most comprehensive mustard omics datasets to date from over 2,000 accessions, 38 

including data from genomics, variomics, transcriptomics, phenomics, and 39 

metabolomics. BjuIR provides sophisticated analyses for these multi-omics datasets of 40 

mustard with user-friendly interfaces, enabling rapid querying of “variant/gene 41 

expression-phenotype” associations for the quick identification of candidate genes and 42 

greatly benefiting functional genomics research. 43 
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DATA AND FUNCTIONAL MODULES IN BjuIR 44 

BjuIR boasts a rich repository of large-scale multi-omics datasets (Figure 1A), 45 

encompassing 40 genome assemblies (Supplemental Table 1), 8,869,856 single 46 

nucleotide polymorphisms (SNPs) and short insertions/deletions (InDels) across 1,614 47 

accessions (Supplemental Figure 1 and Supplemental Table 2), 941 RNA-seq libraries 48 

(Supplemental Table 3), 412 metabolites (Supplemental Table 4), phenotypic data of 49 

628 accessions spanning 16 traits (Supplemental Table 5), and 1,841 mustard-centric 50 

literature entries. Various analysis methods were applied to fully explore the value of 51 

these datasets and the analysis results are organized and accessible in eight modules 52 

within BjuIR (Figure 1B).  53 

The “Genomics” module provides queries for syntenic relationships between 54 

genomes and gene annotation; the “Population” module details accession information 55 

and provides selective signals of populations; the “Variations” module allows for the 56 

exploration of variants, and their associations with phenotypes and gene expression 57 

levels; The “Transcriptomics” module features gene expression profiles, co-expression 58 

networks and differential expression analysis; the “Phenomics” module presents 59 

phenotype data; the “Metabolomics” module provides metabolite information; The 60 

“Multi-omics” module facilitates quick queries for “variation-gene expression-61 

phenotype” associations generated from genome-wide association study (GWAS), 62 

transcriptome-wide association analysis (TWAS), expression quantitative trait loci 63 

(eQTL) mapping analysis, colocalization analysis, and summary-based mendelian 64 

randomization (SMR); and the “Literature” module supports literature studies on 65 

mustard. Each module is equipped with user-friendly interfaces for result visualization, 66 

data downloads, and seamless navigation among modules and other databases. 67 
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APPLICATIONS AND ANALYSIS TOOLS IN BjuIR 68 

Comprehensive datasets and thoughtfully designed modules in BjuIR are 69 

of great utility for those involved in functional genomics and candidate 70 

genes/variations identification efforts. 71 

In the “Genomics” module, users can visualize global genome alignments in a dotplot 72 

(Figure 1C) and local genome alignments in Gbrowse in the “Genome synteny” 73 

interface (Supplemental Figure 2A) and query homologous gene clusters by entering 74 

gene ID or gene name in the “Gene cluster” interface (Supplemental Figure 2B). 75 

Additionally, they can explore annotations of gene families and biological pathways for 76 

mustard genes in the “Gene family” and “Pathway” interfaces (Supplemental Figure 77 

2C and 2D). 78 

The “Transcriptomics” module offers gene expression profiles across populations 79 

and tissues, co-expression analysis, and comparative transcription analysis, as 80 

demonstrated in Supplemental Figure 3. These capabilities are exemplified through the 81 

gene BjuA09.WRI1. By entering the gene BjuVA09G4986 (WRI1) in the “Tissue 82 

expression profile” and “eFP” interface, users can access the tissue expression profiles 83 

of BjuA09.WRI1 and its homologous genes, presented in a heatmap (Supplemental 84 

Figure 3A) and eFP viewer (Figure 1D). Users can also explore gene-gene and lncRNA-85 

mRNA co-expression networks related to BjuA09.WRI1 in the “Co-expression network” 86 

interface (Supplemental Figure 3B and 3C). Moreover, they can access differentially 87 

expressed genes/lncRNAs in the “Differential expression” interface (Supplemental 88 

Figure 3D and 3E). 89 

The “Population” module provides queries for detailed information of 1,614 90 

accessions, including their subpopulations, usages, and origins (Supplemental Figure 4 91 

and Supplemental Table 2). Furthermore, this module enables the querying of selective 92 

signals, such as π, Tajima’s D, FST, and cross-population extended haplotype 93 

homozygosity (XP-EHH), which are calculated using variations to identify candidate 94 

regions and genes that may be under selection (Supplemental Figure 5). 95 
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The “Variations” module provides detailed information on genetic variants and 96 

assessment of how specific variants or haplotypes affect phenotypes and gene 97 

expression (Supplemental Figure 6). For instance, by inputting the gene ID 98 

“BjuVB08G59610” into the “Variations/Single-locus model” interface, the result page 99 

displays annotations for all SNPs and InDels within the gene region (Supplemental 100 

Figure 6A-6D). Choosing a particular variant, such as “BB_Chr08:62443776” 101 

(Supplemental Figure 6D), users can examine its allele frequency across diverse 102 

subpopulations and geographical locations (Supplemental Figure 6E and 6F), and 103 

explore its correlation with phenotypic traits, such as thousand seed weight, as well as 104 

with gene expression levels (Supplemental Figure 6G and 6H). 105 

Integrated analyses of multi-omics data in the “Multi-omics” module vastly improve 106 

the efficiency of candidate gene discovery in B. juncea. Here, users can submit a gene 107 

name, ID, or trait name to unveil associations between variations, gene expression, and 108 

phenotypes. This module includes “variation-trait” associations identified by GWAS 109 

(Supplemental Figure 7A and Supplemental Table 6), “variation-gene expression” 110 

associations from eQTL (Supplemental Figure 7B and Supplemental Table 7), “gene 111 

expression-trait” associations identified by TWAS (Supplemental Figure 7C 112 

Supplemental Table 8), as well as colocalization analyses (Supplemental Figure 7D-7F 113 

and Supplemental Table 9). The reliability of these integrated results is demonstrated 114 

by a reproducibility rate of 60.42% in comparison to prior findings (Harper et al., 2020), 115 

as listed in Supplemental Table 10. Additionally, the “variation-gene expression-trait” 116 

associations are also viewable in a network format, exemplified by entering the “BIM1” 117 

gene within the “Multi-omics/Association networks” interface, which showcases all 118 

related associations in a visual network (Figure 1E). 119 

The “Literature” module offers advanced search capabilities based on keywords, 120 

journal names, and publication years, allowing users to efficiently access research 121 

advancements related to mustard in a specific field. For instance, by entering the 122 

keyword “flowering” in this module, users can retrieve relevant literature on 123 

“flowering”, with detailed information displayed in a table. In addition, the statistics of 124 
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the literature, organized by publication year or journal, are visually presented in line 125 

graphs and bar charts. An additional feature is the provision of a keyword co-occurrence 126 

network for visualizing trends in studies related to the flowering of mustard 127 

(Supplemental Figure 8). 128 

The “Tools” module incorporates 15 essential bioinformatics analysis tools 129 

applications, supporting user-initiated analyses, including Gene Ontology (GO) 130 

enrichment, linkage disequilibrium (LD) calculations, SNP matching for germplasm 131 

identification, sequence extraction, primer design, among other functions 132 

(Supplemental Figure 9).  133 

CASE STUDY: MINING NOVEL CANDIDATE VARIANTS AND GENES 134 

ASSOCIATED WITH TOCOPHEROL CONTENT USING BjuIR 135 

We illustrate the utility of BjuIR in mining candidate genes and variations using the 136 

example of tocopherol, a crucial vitamin E component vital for seed quality and human 137 

nutrition. Tocopherol exists in various forms, such as α-tocopherol, which is recognized 138 

for having the highest vitamin E activity in mammals and can be derived from γ-139 

tocopherol (Tucker and Townsend, 2005). Initiating with the query “γ-/α-tocopherol 140 

content in seed” in the “Multi-omics/GWAS” interface, the analysis rendered a 141 

Manhattan plot revealing two genomic loci associated with γ-/α-tocopherol content 142 

located on chromosomes AA_Chr02 and AA_Chr06. While the AA_Chr02 locus had 143 

been previously reported (Harper et al., 2020), the locus on AA_Chr06 emerged as a 144 

novel finding, comprising an LD block between 5.88 to 5.95 Mb (Figure 1F and 1G), 145 

within which seven genes reside (Figure 1H and Supplemental Table 11). Specifically, 146 

BjuVA06G10820, notable for containing the largest number of GWAS-SNPs in its 147 

coding and 3 kb upstream regions, was identified. Its homolog in Arabidopsis thaliana 148 

(AT1G15125) is known to code for S-adenosyl-L-methionine-dependent 149 

methyltransferases that participate in converting γ-tocopherol to α-tocopherol (Tavva 150 

et al., 2007), suggesting that BjuVA06G10820 could be a prime candidate gene within 151 

the AA_Chr06 locus. Further, haplotype analysis of BjuVA06G10820 through the 152 

“Variations” module’s “Single-locus model” interface uncovered two prevalent 153 
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haplotypes (Figure 1I). Notably, accessions carrying Haplotype1 were significantly 154 

associated with reduced γ-/α-tocopherol content compared to those with Haplotype2, 155 

delineated in Figure 1J. Such findings will provide a valuable reference for future 156 

breeding strategies aimed at boosting α-tocopherol levels in mustard seeds and 157 

underscore BjuIR’s aptitude for identifying candidate genes and variants associated 158 

with specific traits. 159 

In conclusion, BjuIR stands as the most extensive and comprehensive multi-omics 160 

database to date for functional genomics research in mustard. Its key features include 161 

(1) expedited access to each omics dataset and complete analysis results; (2) quick 162 

mining of candidate genes and variants via robust “variant-gene expression-phenotype” 163 

associations; (3) multiple user-friendly, online bioinformatic tools; and (4) navigation-164 

friendly interfaces for efficient data mining. With its rich database and thoughtful 165 

design, BjuIR proves to be a highly efficient and convenient platform for functional 166 

genomics research and candidate gene identification. Looking ahead, BjuIR will persist 167 

in incorporating novel omics data, reinforcing its status as an indispensable platform 168 

for furthering functional genomics and genetic improvement in mustard. 169 
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Figure 1. Overview of BjuIR. (A) Large-scale datasets collected in BjuIR. (B) Eight 218 

modules and their functions in BjuIR. (C) Comparative genomics analysis between 219 

T84-66.V2.0 and AU213.V1.0 genome in the “Genomics” module. (D) eFP viewer 220 

displaying tissue-specific expression profiles of the gene BjuVA09G4986 in the 221 

“Transcriptomics” module. (E) “Variation-gene expression-phenotype” associations 222 

related to gene BIM1 in the “Multi-omics” module. (F-J) Identification of novel 223 

candidate genes/variants associated with γ-/α-tocopherol content in BjuIR. (F) GWAS 224 

for γ-/α-tocopherol content in seed. The P-value threshold was set at 6.54e-6 based on 225 

1/n, where n represents the number of independent SNPs (n =152,884). (G) Local 226 

Manhattan plot of GWAS for γ-/α-tocopherol content and heatmap of linkage 227 

disequilibrium (LD) blocks. The color of the dots represents the degree of LD with the 228 

lead SNP. (H) Genes in the LD block are significantly associated with γ-/α-tocopherol 229 

content. (I) Haplotypes formed by combinations of GWAS-SNPs on the coding region 230 

of BjuVA06G10820 and its 3 kb upstream flanking region. (J) Comparison of γ-/α-231 

tocopherol content between accessions with different haplotypes. * indicates P < 0.05 232 

(Wilcoxon rank sum test). 233 
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