研究报告 Research Report

葫芦科 14-3-3 (GRF)基因家族的鉴定及进化分析

穆鑫格 李司宇 朱春雨 何亚萍 岳贞 张显 魏春华* 西北农林科技大学园艺学院,杨凌,712100 *通信作者, xjwend020405@nwafu.edu.cn

摘 要 14-3-3 蛋白是植物中一类高度保守的蛋白家族,因其特异识别并结合靶蛋白的磷酸化位点而广泛 参与植物生长发育和逆境胁迫响应过程。为系统地了解 14-3-3 (GRF)基因家族在葫芦科作物中的基本特征 和进化关系,本研究利用生物信息学从葫芦科 7 个物种基因组内共鉴定出 83 个 14-3-3 (GRF)基因,其中西 瓜中有 10 个、甜瓜中 9 个、黄瓜中 10 个、瓠瓜中 9 个,3 个南瓜属物种基因组各 15 个。理化特性表明14-3-3 (GRF)蛋白的分子量约为 30 kD,且大都为酸性氨基酸(pI<7.0)。相对于西瓜、甜瓜、黄瓜和瓠瓜,基因组复制 事件是 3 个南瓜属物种内 14-3-3 (GRF)基因数目增多的主要原因。进化分析显示,葫芦科 14-3-3 (GRF)基 因家族可进一步被划分为 ε 类和非 ε 类亚组,且后者的基因结构(外显子数目,内含子相位)较为保守。本研 究结果首次完成了 14-3-3 (GRF)基因家族在葫芦科作物的鉴定、基因结构、基因家族扩增、共线性及进化分 析,为更深入研究该家族基因的生物学功能提供参考。

关键词 葫芦科; 14-3-3 (GRF)基因家族; 共线性分析; 进化分析

Genome-wide Identification and Evolutionary Analysis of 14–3–3 (GRF) Gene Family in Cucurbitaceae

Mu Xinge Li Siyu Zhu Chunyu He Yaping Yue Zhen Zhang Xian Wei Chunhua * College of Horticulture, Northwest A&F University, Yangling, 712100 * Corresponding author, xjwend020405@nwafu.edu.cn DOI: 10.13271/j.mpb.019.000768

Abstract 14–3–3 protein is a highly conserved gene family in plants, which can specially recognize and bind with phosphoserine/phosphothreonine residues in the target proteins and thus involve in plant development and responses to environmental stresses. To systemically recover the basic characteristics and evolutionary history of 14–3–3 (GRF) gene family in Cucurbitaceae. In this study, a total of 83 14–3–3 (*GRF*) genes were identified from the genomes of 7 species of Cucurbitaceae by bioinformatics including 10, 9, 10, 9 from watermelon, melon, cucumber and bottle gourd, as well as 45 homologs from three *Cucurbita* pecies. Physicochemical properties reveal that the molecular weights of most 14–3–3 (GRF) proteins are around 30 kD, which are considered as soluble acidic proteins due to their isoelectric points (pI<7.0). Compared with that in watermelon, melon, cucumber and bottle gourd, the whole genome duplication is the main reason for the high copy numbers of 14–3–3 (*GRF*) genes in *Cucurbita* genus. Additionally, the 14–3–3 (GRF) gene family could be further divided into two groups (group ε and non– ε group), of which the latter one contains the more conserved gene structures, such as exon number and intron phase. Collectively, these results in this study provide the first insights into the gene structure, gene family

基金项目:本研究由国家重点研发计划(2018YFD0100704-2)、现代农业产业技术体系建设专项资金资助(CARS-26-18)、陕西省农业领域重点项目(2017ZDXM-NY-025)和西安市科技攻关项目(2017050NC/NY006(3))共同资助

引用格式: Mu X.G., Li S.Y., Zhu C.Y., He Y.P., Yue Z., Zhang X., and Wei C.H., 2021, Genome-wide identification and evolutionary analysis of 14-3-3 (GRF) gene family in Cucurbitaceae, Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 19(3): 768-779. (穆鑫格, 李司宇, 朱春雨, 何亚萍, 岳贞, 张显, 魏春华, 2021, 葫芦科 14-3-3 (GRF)基因家族的鉴定及进化分析, 分子植物育种, 19(3): 768-779.)

expansion, syntenic relationship and evolutionary analysis of 14-3-3 (GRF) gene family in Cucurbitaceae, which will offer valuable information for functional analysis of 14-3-3 (*GRF*) genes in future. **Keywords** Cucurbitaceae; 14-3-3 (GRF) gene family; Syntenic analysis; Evolutionary analysis

14-3-3 蛋白是一类高度保守的多功能蛋白家族 (约 30 kD), 广泛存在于真核生物中, 因其可特异识 别并结合磷酸化位点而广泛参与调节细胞代谢、信 号传导及逆境胁迫响应等过程中(李菲等, 2017; Yashvardhini et al., 2018)。在植物中, 14-3-3 蛋白可形成 同源或异源二聚体,是组成 G-box 蛋白复合体的一部 分,故又被命名为 GRF (G-box regulatory factor or general regulatory factor) 或 GF14 (G-box factor 14-3-3 homologs) (Delille et al., 2001; Tian et al., 2015)。随着 越来越多物种基因组序列的公布,全基因组范围鉴 定 14-3-3(GRF)基因已在很多物种内完成, 如在甜 瓜(Cucumis melo)、拟南芥(Arabidopsis thaliana)、番茄 (Solanum lycopersicum)、大豆(Glycine max)、苜蓿 (Medicago truncatula)、杨树 (Populus trichocarpa)、水 稻(Oryza sativa)中分别鉴定出 9、15、12、18、11、14、 8个14-3-3 (GRF)基因同源体(Rosenquist et al., 2001; Xu and Shi, 2006; 马勇等, 2013; 李菲等, 2017; 李昕文 等, 2017)。进化分析表明, 植物中 14-3-3 (GRF)基因 家族可以被划分为 ε 类和非 ε 类;进一步对基因结 构分析发现 ε 类 14-3-3 (GRF)基因通常包含 6~7 个 外显子和 4~6 个内含子, 而非 ε 类 14-3-3 (GRF)基因 一般只含有4个外显子和3个内含子(Delille et al., 2001; Rosenquist et al., 2001; Tian et al., 2015).

14-3-3 (GRF)蛋白可结合磷酸化蛋白(激酶)并 通过改变其活性、构象、稳定性等方式参与到植物对 逆境胁迫的响应过程中(Liu et al., 2017; Ormancey et al., 2017)。在大豆中,6个14-3-3 (GRF)蛋白可通过 与磷转运蛋白 PHT6 互作从而参与并调控磷信号通 路(李昕文等, 2017)。在拟南芥中, 14-3-3 (GRF)蛋 白可分别通过结合并改变 CBF 和 SOS2 蛋白的活 性参与到植物对冷和盐胁迫的响应过程中(Liu et al., 2017)。通过对表达量分析, Xu 和 Shi (2006)发现 14-3-3 (GRF)蛋白可参与到番茄根系对盐胁迫及钾、 铁离子逆境胁迫中。14-3-3 (GRF)蛋白还可与钙调 蛋白激酶 CDPK (Calcium-dependent protein kinase) 共同作用参与到植物初级新陈代谢、激素合成、开花 等生物学途径中。如拟南芥 AtCDPK16 蛋白和 14-3-3ω蛋白可通过调控乙烯合成限速酶 AtACS7 的稳定性来影响植物体内乙烯的合成(Ormancey et al., 2017).

葫芦科作物包括西瓜(Citrullus lanatus)、黄瓜(C. sativus)、甜瓜、南瓜(Cucurbita genus)、瓠瓜(Lagenaria siceraria)、冬瓜(Benincasa hispida)等瓜果蔬菜,为人 们日常生活提供了重要的水果和蔬菜。然而,上述作 物在栽培过程中常受到非生物逆境胁迫,如低温弱 光、干旱等,造成作物产量下降和品质降低。因此,鉴 定并挖掘不同作物内响应逆境胁迫的保守基因,可 对未来作物的遗传改良提供参考。近年来,葫芦科作 物基因组序列的公布,为全基因组范围鉴定基因家 族并分析其进化提供了重要的基础平台(Huang et al., 2009; Garcia-Mas et al., 2012; Guo et al., 2013; Sun et al., 2017; Wu et al., 2017; Montero-Pau et al., 2018). 本研究通过生物信息学,利用已公布的西瓜、甜瓜、 黄瓜、瓠瓜、中国南瓜、印度南瓜和美洲南瓜的基因 组信息,在葫芦科作物中共鉴定出83个14-3-3 (GRF)基因,进一步分析了其理化性质、染色体分布 及共线性,并通过进化和基因结构分析获得了该家 族在不同物种内的直系同源基因,为深入研究该家 族基因生物学功能提供了参考。

1 结果与分析

1.1 葫芦科 14-3-3 (GRF)基因家族的鉴定

通过生物信息学,以拟南芥 15 个 14-3-3 基因的 蛋白序列为 Query,利用 BLAST 软件在葫芦科作物 西瓜、甜瓜、黄瓜、中国南瓜、印度南瓜、美洲南瓜和 瓠瓜中分别鉴定出 10、9、10、15、15、15和 9 个 14-3-3 基因家族同源体(表 1),其中甜瓜中鉴定出的 9 个 14-3-3 同源基因与已发表文章中的鉴定结果一致 (马勇等, 2013)。根据 14-3-3 基因在染色上的位置, 按"物种+GRF+数字"的形式依次将其命名。14-3-3 (*GRF*)基因的核苷酸序列差异较大,但其编码的蛋白 序列大部分都小于 300 aa,分子量在27~33 kD 之间 (表 1)。通过等电点预测,发现除了印度南瓜中基因 *CmaGRF06* 的等电点为 8.94 外(碱性蛋白),葫芦科 作物中其他 14-3-3 蛋白都为酸性氨基酸(pl<7.0)。

1.2 葫芦科 14-3-3 (GRF)基因家族的染色体分布

根据葫芦科作物的基因组信息,利用软件TBtools 绘制 14-3-3 (GRF)基因在染色体上的分布(图 1)。

分子植物育种 770 Malagular Plant

770 Molecular Plant Breeding

表1葫芦科14-3-3(GRF)基因家族成员信息

Table 1 Information of 14-3-3(GRF) in Cucurbitaceae

物种	基因	基因 ID	染色体	起始位置	终止位置	基因长度(bp)	氨基酸数目(aa)	分子量(kD)	等电点
Species	Gene	Gene ID	Chr.	Starting	End	Gene length	Number of	Molecular	pI
				point	position	(bp)	amino acids (aa)	weight (kD)	
西瓜	ClGRF01	Cla000396	Chr.05	31 040 110	31 042 355	2 246	257	29.15	5.24
C. lanatus	ClGRF02	Cla002262	Chr.07	1 234 257	1 235 664	1 408	206	23.14	4.86
	ClGRF03	Cla010790	Chr.07	29 906 617	29 908 209	1 593	261	29.41	4.75
	ClGRF04	Cla022025	Chr.08	19 647 426	19 650 182	2 757	279	32.14	4.99
	ClGRF05	Cla022097	Chr.08	20 366 670	20 368 969	2 300	285	32.67	5.06
	ClGRF06	Cla022108	Chr.08	20 486 195	20 487 840	1 646	261	29.53	4.77
	ClGRF07	Cla022171	Chr.08	21 149 246	21 152 576	3 331	252	28.37	4.69
	ClGRF08	Cla023013	Chr.11	16 472 643	16 474 998	2 356	270	30.88	5.21
	ClGRF09	Cla023023	Chr.11	16 578 542	16 580 798	2 257	258	29.21	4.68
	ClGRF10	Cla023045	Chr.11	16 815 179	16 817 134	1 956	238	26.94	5.90
加加	CmGRF01	MELO3C018726	Chr.01	2 431 151	2 434 957	3 807	261	29.25	4.69
C. melo	CmGRF02	MELO3C011421	Chr.03	23 846 980	23 850 095	3 116	264	30.12	4.87
	CmGRF03	MELO3C011041	Chr.03	26 894 107	26 896 299	2 193	261	29.53	4.77
	CmGRF04	MELO3C011028	Chr.03	26 985 537	26 987 977	2 441	251	28.68	4.89
	CmGRF05	MELO3C003536	Chr.04	2 061 139	2 065 091	3 953	252	28.55	4.78
	CmGRF06	MELO3C003562	Chr.04	2 284 855	2 287 392	2 538	258	29.14	4.71
	CmGRF07	MELO3C003572	Chr.04	2 366 302	2 369 502	3 201	249	28.34	4.96
	CmGRF08	MELO3C018934	Chr.07	13 640 309	13 643 239	2 931	263	29.59	4.79
	CmGRF09	MELO3C012146	Chr.10	2 364 994	2 367 873	2 880	263	30.02	4.91
黄瓜	CsGRF01	Csa2M368950.1	Chr.02	17 885 938	17 888 634	2 697	250	28.61	4.95
C. sativus	CsGRF02	Csa2M369070.1	Chr.02	17 968 965	17 971 125	2 161	261	29.55	4.77
	CsGRF03	Csa2M372150.1	Chr.02	18 433 210	18 436 841	3 632	252	28.35	4.69
	CsGRF04	Csa3M889710.1	Chr.03	37 714 827	37 719 519	4 693	422	48.07	6.41
	CsGRF05	Csa3M889810.1	Chr.03	37 785 028	37 787 847	2 820	258	29.13	4.67
	CsGRF06	Csa3M890040.1	Chr.03	37 982 442	37 986 441	4 000	252	28.60	4.66
	CsGRF07	Csa4M094520.1	Chr.04	6 192 645	6 194 269	1 625	263	29.59	4.79
	CsGRF08	Csa5M606630.1	Chr.05	22 963 001	22 965 297	2 297	277	31.46	4.98
	CsGRF09	Csa6M366480.1	Chr.06	16 731 548	16 734 844	3 297	264	30.05	4.87
	CsGRF10	Csa7M048090.1	Chr.07	3 015 383	3 019 400	4 018	261	29.40	4.74
瓠瓜	LsGRF01	Lsi04G003680.1	Chr.04	3 674 392	3 676 541	2 150	232	26.15	4.84
L. siceraria	LsGRF02	Lsi04G022350.1	Chr.04	29 388 901	29 392 554	3 654	239	27.28	4.96
	LsGRF03	Lsi04G022460.1	Chr.04	29 500 335	29 503 268	2 934	258	29.23	4.68
	LsGRF04	Lsi07G009870.1	Chr.07	13 570 780	13 574 550	3 771	266	29.87	4.79
	LsGRF05	Lsi08G008960.1	Chr.08	17 327 349	17 331 270	3 922	245	27.71	4.86
	LsGRF06	Lsi08G009660.1	Chr.08	18 146 289	18 149 508	3 220	272	31.13	4.96
	LsGRF07	Lsi08G009800.1	Chr.08	18 276 685	18 278 948	2 264	261	29.55	4.78
	LsGRF08	Lsi08G010390.1	Chr.08	18 981 438	18 983 449	2 012	240	27.24	5.61
	LsGRF09	Lsi11G015690.1	Chr.11	23 995 462	23 998 460	2 999	275	31.02	4.84
印度南瓜	CmaGRF01	CmaCh01G004420.1	Chr.01	2 223 792	2 226 079	2 288	275	30.88	4.80
C. maxima	CmaGRF02	CmaCh01G016070.1	Chr.01	11 072 379	11 075 531	3 153	248	28.49	5.16
	CmaGRF03	CmaCh01G016160.1	Chr.01	11 112 714	11 115 366	2 653	258	29.21	4.76
	CmaGRF04	CmaCh04G016970.1	Chr.04	8 531 498	8 534 298	2 801	263	30.02	4.81

葫芦科 14-3-3 (GRF)基因家族的鉴定及进化分析

染色体 起始位置 终止位置 基因长度(bp) 氨基酸数目(aa) 分子量(kD) 等电点

物种

基因

基因 ID

CpeGRF15 Cp4.1LG15g08440.1 LG15

续表1

4.73

29.41

Continuing table 1

Species	Gene	Gene ID	Chr.	Starting	End Gene lengt		Number of	Molecular	pI
				point	position	(bp)	amino acids (aa)	weight (kD)	
印度南瓜	CmaGRF05	CmaCh05G004480.1	Chr.05	2 058 099	2 062 200	4 102	372	42.43	5.20
C. maxima	CmaGRF06	CmaCh05G005010.1	Chr.05	2 374 954	2 380 674	5 721	709	81.18	8.94
	CmaGRF07	CmaCh05G005070.1	Chr.05	2 430 586	2 432 735	2 150	261	29.60	4.85
	CmaGRF08	CmaCh05G005590.1	Chr.05	2 740 473	2 744 123	3 651	283	31.67	4.97
	CmaGRF09	CmaCh09G005680.1	Chr.09	2 573 521	2 579 130	5 610	258	29.17	4.69
	CmaGRF10	CmaCh11G018880.1	Chr.11	12 509 581	12 513 202	3 622	268	30.14	4.83
	CmaGRF11	CmaCh12G001010.1	Chr.12	400 660	403 713	3 054	264	30.03	4.87
	CmaGRF12	CmaCh12G001670.1	Chr.12	742 588	744 758	2 171	261	29.61	4.87
	CmaGRF13	CmaCh12G001850.1	Chr.12	848 110	852 167	4 058	291	32.76	4.91
	CmaGRF14	CmaCh14G011340.1	Chr.14	8 781 087	8 784 154	3 068	262	29.58	4.79
	CmaGRF15	CmaCh19G010270.1	Chr.19	8 778 030	8 780 291	2 262	248	27.78	4.75
中国南瓜	CmoGRF01	CmoCh01G004750.1	Chr.01	2 267 892	2 270 489	2 598	263	29.60	4.80
C. moschata	CmoGRF02	CmoCh01G016540.1	Chr.01	12 526 061	12 528 402	2 342	240	27.43	5.44
	CmoGRF03	CmoCh01G016610.1	Chr.01	12 565 115	12 568 232	3 118	258	29.21	4.76
	CmoGRF04	CmoCh04G017820.1	Chr.04	8 966 872	8 969 150	2 279	267	30.47	4.82
	CmoGRF05	CmoCh05G004740.1	Chr.05	2 214 382	2 217 442	3 061	392	45.25	5.22
	CmoGRF06	CmoCh05G005240.1	Chr.05	2 530 297	2 533 458	3 162	250	28.54	4.85
	CmoGRF07	CmoCh05G005340.1	Chr.05	2 590 599	2 592 504	1 906	285	32.37	4.87
	CmoGRF08	CmoCh05G005850.1	Chr.05	2 895 035	2 898 168	3 134	252	28.39	4.74
	CmoGRF09	CmoCh09G005550.1	Chr.09	2 651 002	2 653 846	2 845	258	29.17	4.69
	CmoGRF10	CmoCh11G019660.1	Chr.11	13 528 927	13 538 227	9 301	696	78.08	4.99
	CmoGRF11	CmoCh12G000800.1	Chr.12	434 239	437 188	2 950	264	30.04	4.87
	CmoGRF12	CmoCh12G001290.1	Chr.12	795 393	797 387	1 995	261	29.64	4.87
	CmoGRF13	CmoCh12G001440.1	Chr.12	908 622	917 557	8 936	482	54.19	4.98
	CmoGRF14	CmoCh14G011650.1	Chr.14	9 444 790	9 447 772	2 983	257	29.03	4.79
	CmoGRF15	CmoCh19G010600.1	Chr.19	9 198 427	9 202 935	4 509	409	46.02	5.15
美洲南瓜	CpeGRF01	Cp4.1LG01g12070.1	LG01	8 963 226	8 965 985	2 760	292	33.55	4.90
C. pepo	CpeGRF02	Cp4.1LG02g05080.1	LG02	2 010 903	2 014 013	3 111	258	29.21	4.76
	CpeGRF03	Cp4.1LG02g05030.1	LG02	2 049 866	2 053 914	4 049	312	36.05	6.43
	CpeGRF04	Cp4.1LG02g13890.1	LG02	12 113 181	12 119 296	6 1 1 6	263	29.62	4.80
	CpeGRF05	Cp4.1LG03g15500.1	LG03	7 368 376	7 370 885	2 510	257	29.03	4.79
	CpeGRF06	Cp4.1LG04g02900.1	LG04	7 486 248	7 490 292	4 045	260	29.25	4.78
	CpeGRF07	Cp4.1LG06g04360.1	LG06	2 467 354	2 470 238	2 885	258	29.14	4.69
	CpeGRF08	Cp4.1LG07g00890.1	LG07	421 056	424 167	3 112	264	30.07	4.87
	CpeGRF09	Cp4.1LG07g01440.1	LG07	797 418	800 181	2 764	261	29.61	4.87
	CpeGRF10	Cp4.1LG07g01600.1	LG07	916 270	919 586	3 317	252	28.43	4.70
	CpeGRF11	Cp4.1LG11g03840.1	LG11	2 157 786	2 160 990	3 205	331	37.81	5.26
	CpeGRF12	Cp4.1LG11g04360.1	LG11	2 479 731	2 482 658	2 928	210	23.88	4.78
	CpeGRF13	Cp4.1LG11g04480.1	LG11	2 537 299	2 539 520	2 222	261	29.61	4.85
	CpeGRF14	Cp4.1LG11g04890.1	LG11	2 844 411	2 848 080	3 670	278	31.13	5.50

8 262 657 8 265 618 2 962

261

14-3-3 (GRF)基因在各物种染色体上呈不均匀分布, 如在西瓜和瓠瓜中该家族同源体分布在4条染色体 上(图1A;图1B),在黄瓜属(黄瓜和甜瓜)中分布在5条 染色体上(图1D;图1E),而在南瓜属(中国南瓜,印度 南瓜和美洲南瓜)中则分布在8条染色体上(图1C; 图1F;图1G)。而且部分14-3-3 (GRF)基因在基因 组中呈簇状分布,如西瓜中的 ClGRF05、ClGRF06、 ClGRF08和 ClGRF09,甜瓜中的 CmGRF03、CmGRF-04、CmGRF06和 CmGRF07,中国南瓜中的 CmoGRF-02、CmoGRF03、CmoGRF06和 CmoGRF07。

1.3 葫芦科 14-3-3(GRF)基因家族的复制及共线性分析

基因复制是物种进化的一个基本过程,对产生新 的基因促进物种分化及多样性具有重要作用,该过 程包括基因组复制(whole genome duplication, WGD)、 串联复制(Tandem duplication)及染色体片段复制 (Segmental duplication) (Vision et al., 2000; Cannon et al., 2004; Wei et al., 2019)。通过 BLASTp 和 MCscan 软件,对葫芦科7个物种中14-3-3(GRF)基因家族 的复制事件进行了分析(表 2)。结果表明,该基因家 族在西瓜基因组内可检测到两个染色体片段复制, 存在于第08和11染色体之间,包括6个14-3-3 (GRF)基因; 瓠瓜基因组内同样检测到两个染色体 复制事件,存在于第04和08染色体之间;黄瓜属两 个物种内(黄瓜和甜瓜)都各有一个染色体复制;美洲 南瓜基因组内共检测到9个染色体复制事件,而另 外2个南瓜属物种(印度南瓜和中国南瓜)都各检测 到8个染色体复制事件,但是只有一个发生在亚基因 组 A 内, 而其余染色体复制存在于两个亚基因组 A 和 B 之间,表明该属物种内 14-3-3 (GRF)基因家族 的扩增主要原因是基因组事件(Sun et al., 2017; Montero-Pau et al., 2018).

为进一步探索 14-3-3 (GRF)基因家族在葫芦科物种间的进化关系,利用 7 个葫芦科作物的基因组序列信息,通过 BLASTp 和 MCscan 软件分析了该基因家族在物种间的共线性(图 2)。在西瓜、瓠瓜、甜瓜和黄瓜 4 个物种的两两基因组间都可检测到 8 个或 9 个染色体片段复制事件,进一步研究发现这些共线性区域在 4 个物种间比较保守,如西瓜的 ClGRF05/ClGRF06、ClGRF08/ClGRF09,葫芦的 LsGR-F02/LsGRF03、LsGRF06/LsGRF07, 甜瓜的 CmGRF03/CmGRF04、CmGRF04/CsGRF05 在物种间呈对应关系(图 2A),表明物种分化后该家族基因所在区域在进

化过程中仍较为保守。在南瓜属 3 个物种中,美洲南 瓜与中国南瓜和印度南瓜分别检测到 22 和 26 个共 线性区域,平均染色体长度大于 2.87 Mb,最长为 21.85 Mb;而中国南瓜和印度南瓜之间只检测到 12个 染色体复制事件,最长染色体长度为 1.04 Mb,平均 长度小于 0.33 Mb (图 2B)。

1.4 葫芦科 14-3-3(GRF)基因家族的进化分析

根据基因结构和序列同源性,植物中14-3-3(GRF) 基因家族可被划分为 ε 类和非 ε 类两组(Rosenquist et al., 2001; Tian et al., 2015)。为更好地了解葫芦科 14-3-3 (GRF)基因家族的进化,以拟南芥 15 个14-3-3 (GRF)基因作为参考,利用 MEGA 6 软件构建了葫芦 科 83 个 14-3-3 (GRF)蛋白序列的进化树(图 3)。结 果显示,葫芦科 14-3-3 (GRF)基因家族同样可被分 为两个独立的组: ε 类和非 ε 类。其中, ε 类组包括5个 西瓜 14-3-3 (GRF) 基因(ClGRF01, ClGRF02, ClGR-F04, ClGRF05, ClGRF08), 5个领瓜 14-3-3(GRF)基因 (LsGRF01, LsGRF02, LsGRF03, LsGRF06, LsGRF09), 5个甜瓜 14-3-3 (GRF) 基因(CmGRF01, CmGRF02, CmGRF04, CmGRF07, CmGRF09),5 个黄瓜 14-3-3 (GRF)基因(CsGRF01, CsGRF04, CsGRF08, CsGRF09, CsGRF10),南瓜属 14-3-3 (GRF)基因各 7 个,及 6 个 拟南芥 14-3-3 (GRF)基因;各物种剩余 14-3-3 (GRF) 基因序列则组成非 ε 类组。同时,从进化树上可发现 不同物种间的直系同源基因,如西瓜 ClGR F06、甜瓜 CmGRF04、黄瓜 CsGRF02 和瓠瓜 LsGRF07。

1.5 葫芦科 14-3-3 (GRF)家族的基因结构分析

基因结构包括外显子 - 内含子结构、内含子数 目及内含子相位等,可为深入了解基因家族的进化提 供重要参考证据(Zhang et al., 2017; Wei et al., 2019)。 因此,为更好地分析葫芦科 14-3-3(GRF)基因家族的 进化,我们对 83 个 14-3-3(GRF)基因的结构进行了 分析(图 4)。结构显示,该基因家族可被分为两个组(ε 类和非 ε 类),与进化分析结果一致(图 3)。 ε 类组内 14-3-3(GRF)基因大部分含有 6~7 个外显子和 5~6个 内含子,内含子相位多样化,但是内含子前两个相位 较保守为 1 和 2; 而非 ε 类组内 14-3-3(GRF)基因 大部分含有 4 个外显子和 3 个内含子,内含子相位 为 000,较 ε 类组保守。

2 讨论

近年来,葫芦科作物基因组(西瓜,甜瓜,黄瓜,中

773

表 2 物种内 14-3-3 (GRF)基因家族的共线性分析成员信息

Table 2 Syntenic analysis of 14-3-3 (GRF) gene family in Cucurbitaceae species

1	2 共线性区域 1						共线性区域 2									共线性区域内基因						
	Synteny region 1							Synteny region 2									Gene in the synteny region					
		3	4			5			6		_	3	4			5		6			7	8
西瓜	1	Chr.08	20) 3	64 215	5 2	0 596	019	2	31	804	Chr.11	16	469	463	16 730	175	2	60 7	12	ClGRF05/06	ClGR F08/09
C. lanatus	2	Chr.08	20	07	96 056	5 2	1 1 5 2	576	3	56	520	Chr.11	16	815	179	17 096	232	2	81 0	53	ClGRF07	ClGRF10
甜瓜	1	Chr.03	20	68	17 008	3 2	6 990	209	1	73	201	Chr.04	2	146	296	2 371 6	646	2	25 3	50	CmGRF03/04	CmGRF06/07
C. melo																						
黄瓜	1	Chr.02	1	78	85 938	3 1	8 173	810	2	87	872	Chr.03	37	714	827	38 195	759	4	80 9	32	CsGRF01/02	CsGRF04/05
C. sativus																						
瓠瓜	1	Chr.04	29	93	86 583	3 2	9 646	580	2	59	997	Chr.08	18	144	523	18 387	833	2	43 3	10	LsGRF02/03	LsGRF06/07
L. siceraria	2	Chr.04	29	92	62 937	3	0 029	418	7	66	481	Chr.08	18	634	330	18 990	337	3	560	07	LsGRF03	LsGRF08
印度南瓜	1	Chr.01	1	10	72 379) 1	1 277	230	2	04	851	Chr.05	2	374	954	2 648 9	944	2	73 9	90	CmaGRF02/03a	CmaGRF06/07b
C. maxima	2	Chr.01	10	04	10 792	2 1	1 281	924	8	71	132	Chr.09	1	840	056	2 757 9	961	9	179)5	CmaGRF03a	CmaGRF09b
	3	Chr.01	1	10	98 039) 1	1 277	230	1	79	191	Chr.12		722	422	949 87	1	2	27 4	19	CmaGRF03a	CmaGRF12a
	4	Chr.01	-	2 0	34 032	2	2 469	894	4	35	862	Chr.14	7	837	833	9 427 (048	1 5	89 2	15	CmaGRF01a	CmaGRF14b
	5	Chr.05		18	76 325	5	2 444	335	5	68	010	Chr.12		213	606	758 89	6	5	45 2	90	CmaGRF05-07b	CmaGRF11/12a
	6	Chr.05	-	24	58 214	ł	2 789	489	3	31	275	Chr.12		768	333	1 106 8	829	3	38 4	96	CmaGRF08b	CmaGRF13a
	7	Chr.09	-	2 5	54 907	7	3 027	235	4	72	328	Chr.12		722	422	1 325 2	225	6	02 8)3	CmaGRF09b	CmaGRF12a
	8	Chr.11	12	24	88 566	5 1	2 656	611	1	68	045	Chr.19	8	632	335	8 798 9	930	1	66 5	95	CmaGRF10a	CmaGRF15b
中国南瓜	1	Chr.01	12	2 5	26 061	1	2 639	321	1	13	260	Chr.05	2	530	297	2 613 2	287		82 9	90	CmoGRF02/03a	CmoGRF06/07b
C. moschata	2	Chr.01	1	1 8	34 754	1	2 7 5 7	737	9	22	983	Chr.09	1	917	384	2 843 8	870	9	26 4	86	CmoGRF03a	CmoGRF09b
	3	Chr.01	12	2 5	51 270) 1	2 7 5 2	837	2	01	567	Chr.12		774	906	1 008 0	076	2	33 1	70	CmoGRF03a	CmoGRF12/13a
	4	Chr.01	1	2 0	87 033		2 398	013	3	10	980	Chr.14	7	837	789	10 230	963	23	93 1	74	CmoGRF01a	CmoGRF14b
	5	Chr.05	1	2 5	46 248	;	3 105	596	5	59	348	Chr.09	2	622	064	3 091 5	533	4	69 4	59	CmoGRF07b	CmoGRF09b
	6	Chr.05	2	20	14 122		2 605	001	5	90	879	Chr.12		235	615	812 20	8	5	76 59	93	CmoGRF05/07b	CmoGRF11/12a
	7	Chr.09	1	2 6	33 701		3 091	533	4	57	832	Chr.12		774	906	1 361 6	596	5	86 7	90	CmoGRF09b	CmoGRF12a
	8	Chr.11	13	3 5	13 373	1	3 684	987	1	71	614	Chr19	9	038	739	9 222 0	031	1	83 29	92	CmoGRF10a	CmoGRF15b
美洲南瓜	1	LG02	11	1 8	64 297	1	2 306	510	4	42	213	LG03	6	115 9	971	8 126 3	309	20	10 3	38	CpeGRF04	CpeGRF05
C. pepo	2	LG02]	1 7.	47 908		2 4 5 7	461	7	09	553	LG06	1	966	730	2 836 5	553	8	69 82	23	CpeGRF02	CpeGRF07
	3	LG02	1	8	27 332		2 0 2 8	192	2	00	860	LG07		777	401	1 018 6	591	2	41 29	90	CpeGRF02	CpeGRF09
	4	LG02	1	8	27 332		2 042	095	2	14	763	LG11	2	494 8	835	2 753 7	722	2	58 88	37	CpeGRF02	CpeGRF13
	5	LG04	7	7 4	64 556		7 638	904	1	74	348	LG15	8	111 (090	8 284 3	362	1	73 2	12	CpeGRF06	CpeGRF15
	6	LG06	2	2 44	46 811		2 972	277	5	25	466	LG07		777 4	401	1 443 4	164	6	66 00	53	CpeGRF07	CpeGRF09
	7	LG06	2	2 4	33 116		2 944	594	5	11	478	LG11	2	494 8	835	3 056 9	911	5	62 0'	6	CpeGRF07	CpeGRF13
	8	LG07		2	30 035		1 812	264	1 5	82	229	LG11	1	964	145	3 465 5	534	1 5	01 08	39	CpeGRF08-09	CpeGRF11/13
	9	LG07		8.	37 726		1 198	723	3	50	997	LG11	2	566	773	2 874 2	273	3	07 50	00	CpeGRF10	CpeGRF14

注: 1: 物种; 2: 数目; 3: 染色体; 4: 起始位置; 5: 终止位置; 6: 长度(bp); 7: 基因 1; 8: 基因 2; a: 南瓜属亚基因组 A; b: 南瓜属亚基因组 B (Sun et al., 2017)

Note: 1: Species; 2: Number; 3: Chr.; 4: Starting point; 5: End position; 6: Length (bp); 7: Gene 1; 8: Gene 2; a: Subgenome A in *Cucurbita* genus; b: Subgenome B in *Cucurbita* genus (Sun et al., 2017)

国南瓜,印度南瓜,美洲南瓜和瓠瓜)的公布,为全基 因组范围鉴定基因家族并分析其进化提供了重要的 数据平台。高度保守的 14-3-3 (GRF)基因蛋白可特 异识别并结合磷酸化位点,通过改变靶蛋白理化性质 (如蛋白活性,构象和稳定性等)而广泛参与调节细胞 代谢、信号传导及逆境胁迫响应等过程中(李菲等, 2017; Yashvardhini et al., 2018)。本研究通过生物信 息学在葫芦科 7 个基因组中共鉴定出 83 个 14-3-3 (GRF)基因,其中西瓜 10 个、甜瓜 9 个、黄瓜 10 个、 瓠瓜 9 个,3 个南瓜基因组各 15 个(表 1)。而甜瓜中

图 2 葫芦科 14-3-3 (GRF)基因在物种间的共线性分析

注: A: 葫芦科植物; 西瓜: 红色; 瓠瓜: 蓝色; 甜瓜: 黄色; 黄瓜: 绿色; B: 南瓜类型; 中国南瓜: 浅绿色; 印度南瓜: 黄色; 美洲南瓜: 绿色 Figure 2 Syntenic analysis of 14-3-3 (GRF) gene among Cucurbitaceae species

Note: A: Cucurbitaceous plant; C. lanatus: Red; L. siceraria: Blue; C. melo: Yellow; C. sativus: Green; B: Pumpkin cultivars; C. moschata: Light green; C. maxima: Yellow; C. pepo: Green

鉴定出的 9 个 14-3-3 (GRF)基因与已发表文章中的 结果一致(马勇等, 2013)。14-3-3 (GRF)基因家族在不 同物种内包含的家族成员数目差异较大,如拟南芥、 番茄、大豆、苜蓿、杨树、水稻中分别鉴定出15、12、 18、11、14、8个14-3-3 (GRF)基因同源体(Rosenquist et al., 2001; Xu and Shi, 2006; 李菲等, 2017; 李昕文等, 2017)。在葫芦科中,冬瓜族(Benincaseae)作物西瓜、 甜瓜、黄瓜、瓠瓜基因组内 14-3-3 (GRF)基因数目相 似,而南瓜族(Cucurbiteae)3个物种内都包含15个 14-3-3 (GRF)基因,表明该基因家族在冬瓜族和南 瓜族分化时出现差异。共线性分析表明,在西瓜、甜 瓜、黄瓜和瓠瓜基因组中都检测到1~2个染色体片 段复制(表 2),而在南瓜 3 个物种中检测到的染色 体片段复制事件多发生于该属两个亚基因组间,表 明基因组复制事件是冬瓜族和南瓜族物种内 14-3-3 (GRF)基因家族成员数目差异的主要原因(Vision et al., 2000; Sun et al., 2017)。理化性质分析结果表明葫 芦科中的绝大部分 14-3-3 (GRF)蛋白分子量约为 30 kD, 且为酸性氨基酸(pI<7.0) (表 1), 这与已发表 的研究结果相一致(马勇等, 2013; Tian et al., 2015; 李 菲等,2017)。

进一步研究发现,分布在中国南瓜和印度南瓜

两个亚基因组上的 14-3-3 (CRF)基因数目基本一致, 表明该基因家族在不同亚基因组的丢失或获得速率 一致。进化分析表明,葫芦科 14-3-3 (GRF)基因家族 可被进一步划分为 ε 类和非 ε 类两个组(图 3),其中 ε 类组包含的 14-3-3 (GRF)基因数目为每个物种总 数目的 50%左右,与其他双子叶植物中的比例类似, 如拟南芥(46.7%)、苜蓿(50%)等,且都明显高于单子 叶植物的比例,如水稻(25.0%)、短柄草(14.3%)等 (Tian et al., 2015)。基因结构分析表明葫芦科 ε 类组 内 14-3-3 (GRF)基因大部分含有 6~7 个外显子和 5~6 个内含子,内含子相位多样化;而非 ε 类组内 14-3-3 (GRF)基因大部分含有 4 个外显子和 3 个内 含子,内含子相位为 000,较 ε 类组保守(图 4),与已 发表的研究结果较为一致(Tian et al., 2015)。

研究报道,14-3-3 (GRF)基因在不同物种中都可 以参与到植物对逆境胁迫的响应过程中(Delille et al., 2001; Xu and Shi, 2006; Tian et al., 2015; 李昕文等, 2017; 王娇等, 2018; Yashvardhini et al., 2018)。在本研 究中,从进化树上可鉴定出多直系同源基因,如非 ε 类组中西瓜 ClGRF06、甜瓜 CmGRF04、黄瓜 CsGRF02 和瓠瓜 LsGRF07 之间的蛋白序列相似性极高,表明 这些直系同源基因在不同物种内可能有较为保守的

图 3 葫芦科 14-3-3 (GRF)基因家族的进化分析

注: 西瓜: 红色圆点; 瓠瓜: 浅蓝色圆点; 甜瓜: 粉色圆点; 黄瓜: 绿色圆点; 中国南瓜: 橘色圆点; 印度南瓜: 黄绿色圆点; 美洲南瓜: 棕色圆点; 拟南芥: 深蓝色圆点

Figure 3 Evolutionary analysis of 14-3-3 (GRF) gene family in Cucurbitaceae

Note: C. lanatus: Red; L. siceraria: Light blue; C. melo: Pink; C. sativus: Green; C. moschata: Orange; C. maxima: Kelly; C. pepo: Brown; A. thaliana: Dark blue

生物学功能。这为下一步通过表达分析获得不同物种内对逆境胁迫响应的 14-3-3 (GRF)基因提供理论参考。

3 材料与方法

3.1 数据下载及生物信息学鉴定

通过葫芦科(Cucurbitaceae)基因组网站 CuGenDB (http://cucurbitgenomics.org/),将西瓜(Citrullus lanatus, V1)、甜瓜(Cucumis melo, V3.5)、黄瓜(Cucumis sativus, V2)、瓠瓜(Lagenaria siceraria, V1)、中国南瓜(Cucurbita moschata, V1)、印度南瓜(Cucurbita maxima, V1.1)和 美洲南瓜(Cucurbita pepo, V4.1)的基因组序列、蛋白 序列及基因注释文件下载到本地。

以拟南芥 15 条 14-3-3(GRF)基因的蛋白序列 为 Query,通过 BLASTp 程序调取葫芦科作物中的 14-3-3 (GRF)基因同源蛋白(参数: E-value=1e⁻¹⁰)。将 调取的 14-3-3 (GRF)基因蛋白人工去重复后,作为 Query 序列再次通过 BLASTP 程序在各基因组搜索 14-3-3 (GRF)同源基因。人工去重复后,将获得的 14-3-3 (GRF)蛋白序列在 NCBI nr 数据库和拟南芥 TAIR 数据库(https://www.arabidopsis.org/)进行比对, 经人工确认后的蛋白序列列为该物种的候选 14-3-3 (GRF)家族基因。利用 ExPASy 网站的在线工具 ProtParam (http://web.expasy.org/protparam/)完成 14-3-3 (GRF)蛋白的理化性质分析。

3.2 染色体分布及共线性分析

根据鉴定的葫芦科 14-3-3 (GRF)基因的位置信息,利用 TBtools 软件对其在染色体上的分布进行作图。通过 MCscan 软件完成 14-3-3 (GRF)基因家族在物种内和物种间的共线性分析,并利用软件 Circos (http://circos.ca/)进行作图展示。

图 4 葫芦科 14-3-3 (GRF)基因的结构分析 Figure 4 Gene structure of 14-3-3 (GRF) gene in Cucurbitaceae

3.3 进化及基因结构分析

利用软件 Muscle 对 14-3-3 (GRF)蛋白进行多 序列比对,默认参数。通过软件 MEGA 6.0 构建 14-3-3 (GRF)基因家族的系统进化树,采用邻近法(neighbor-joining method, NJ), Bootstrap 值设置为 1 000。

根据 14-3-3(GRF)基因的编码序列和基因组序 列,利用在线工具 GSDS 2.0 (http://gsds.cbi.pku.edu.cn/) 完成该家族的基因结构分析。

作者贡献

穆鑫格和魏春华是本研究的实验设计者和实验 研究的执行人;穆鑫格完成数据分析,论文初稿的写 作;李司宇、朱春雨、何亚萍和岳贞参与实验设计,试 验结果分析; 张显和魏春华是项目的构思者及负责 人,指导实验设计、数据分析、论文写作与修改。全体 作者都阅读并同意最终的文本。

致谢

本研究由国家重点研发计划(2018YFD0100704-2)、现代农业产业技术体系建设专项资金资助(CARS-26-18)、陕西省农业领域重点项目(2017ZDXM-NY-025)和西安市科技攻关项目(2017050NC/NY006(3)) 共同资助。

参考文献

- Cannon S.B., Mitra A., Baumgarten A., Young N.D., and May G., 2004, The roles of segmental and tandem gene duplication in the evolution of large gene families in *Arabidopsis thaliana*, BMC Plant Biol., 4: 10.
- Delille J.M., Sehnke P.C., and Ferl R.J., 2001, The Arabidopsis 14–3–3 family of signaling regulators, Plant Physiol., 126 (1): 35-38.
- Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V.M., Hénaff E., Câmara F., Cozzuto L., Lowy E., Alioto T., Capella-Gutiérrez S., Blanca J., Cañizares J., Ziarsolo P., Gonzalez-Ibeas D., Rodríguez-Moreno L., Droege M., Du L., Alvarez-Tejado M., Lorente-Galdos B., Melé M., Yang L., Weng Y., Navarro A., Marques-Bonet T., Aranda M.A., Nuez F., Picó B., Gabaldón T., Roma G., Guigó R., Casacuberta J.M., Arús P., and Puigdomènech P., 2012, The genome of melon (*Cucumis melo* L.), Proc. Natl. Acad. Sci. USA, 109(29): 11872-11877.
- Guo S., Zhang J., Sun H., Salse J., Lucas W.J., Zhang H., Zheng Y., Mao L., Ren Y., Wang Z., Min J., Guo X., Murat F., Ham B.K., Zhang Z., Gao S., Huang M., Xu Y., Zhong S., Bom-

barely A., Mueller L.A., Zhao H., He H., Zhang Y., Zhang Z., Huang S., Tan T., Pang E., Lin K., Hu Q., Kuang H., Ni P., Wang B., Liu J., Kou Q., Hou W., Zou X., Jiang J., Gong G., Klee K., Schoof H., Huang Y., Hu X., Dong S., Liang D., Wang J., Wu K., Xia Y., Zhao X., Zheng Z., Xing M., Liang X., Huang B., Lü T., Wang J., Yin Y., Yi H., Li R., Wu M., Levi A., Zhang X., Giovannoni J.J., Wang J., Li Y., Fei Z., and Xu Y., 2013, The draft genome of watermelon (*Citrullus lanatus*) and resequencing of 20 diverse accessions, Nat. Genet., 45(1): 51-58.

- Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y., Zhu H., Li J., Lin K., Jin W., Fei Z., Li G., Staub J., Kilian A., Van der Vossen E.A., Wu Y., Guo J., He J., Jia Z., Ren Y., Tian G., Lu Y., Ruan J., Qian W., Wang M., Huang Q., Li B., Xuan Z., Cao J., Asan, Wu Z., Zhang J., Cai Q., Bai Y., Zhao B., Han Y., Li Y., Li X., Wang S., Shi Q., Liu S., Cho W.K., Kim J.Y., Xu Y., Heller-Uszynska K., Miao H., Cheng Z., Zhang S., Wu J., Yang Y., Kang H., Li M., Liang H., Ren X., Shi Z., Wen M., Jian M., Yang H., Zhang G., Yang Z., Chen R., Liu S., Li J., Ma L., Liu H., Zhou Y., Zhao J., Fang X., Li G., Fang L., Li Y., Liu D., Zheng H., Zhang Y., Qin N., Li Z., Yang G., Yang S., Bolund L., Kristiansen K., Zheng H., Li S., Zhang X., Yang H., Wang J., Sun R., Zhang B., Jiang S., Wang J., Du Y., and Li S., 2009, The genome of the cucumber, Cucumis sativus L., Nat. Genet., 41(12): 1275-1281.
- Li F., He X.H., Zhang X.M., Gong J.Y., and Yi Y., 2017, Identification, evolution and characteristic analysis of 14-3-3 gene family in *Medicago*, Jiyinzuxue yu Yingyong Shengwuxue (Genomics and Applied Biology), 36(12): 5238-5243. (李菲, 何小红, 张习敏, 龚记熠, 乙引, 2017, 苜蓿 14-3-3 基因家族的鉴定与进化和特征分析, 基因组学与应用生物学, 36 (12): 5238-5243.)
- Li X.W., Sha A.H., and Huang J.Q., 2017, Repsonse of 14-3-3 family genes to phosphorus starvation in soybean and their interaction with phosphorus transporter PHT6, 2017, Zhongguo Youliao Zuowu Xuebao (Chinese Journal of Oil Crop Science), 39(3): 308-314. (李昕文, 沙爱华, 黄家权, 2017, 大豆 14-3-3 家族基因对低磷胁迫响应及其与磷转运蛋 白 PHT6 的互作, 中国油料作物学报, 39(3): 308-314.)
- Liu Z., Jia Y., Ding Y., Shi Y.T., Li Z., Guo Y., Gong Z.Z., and Yang S.H., 2017, Plasma membrane CRPK1-mediated phosphorylation of 14–3–3 proteins induces their nuclear import to fine-tune CBF signaling during cold response, Mol. Cell, 66(1): 117-128.
- Ma Y., Liu J.R., Bade R.G., and Hasi A.L., 2013, Genome-wide identification and phylogenetic analysis of 14-3-3 gene family in melon, Guangdong Nongye Kexue (Guangdong Agri-

cultural Sciences), 40(24): 104-111. (马勇, 刘嘉荣, 巴德仁贵, 哈斯阿古拉, 2013, 甜瓜 14-3-3基因家族全基因组鉴 定与进化分析, 广东农业科学, 40(24): 104-111.)

- Montero-Pau J., Blanca J., Bombarely A., Ziarsolo P., Esteras C., Martí-Gómez C., Ferriol M., Gómez P., Jamilena M., Mueller L., Picó B., and Cañizares J., 2018, *De novo* assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the *Cucurbita* genus, Plant Biotechnol. J., 16(6): 1161-1171.
- Ormancey M., Thuleau P., Mazars C., and Cotelle V., 2017, CDPKs and 14–3–3 proteins: emerging duo in signaling, Trends Plant Sci., 22(3): 263-272.
- Rosenquist M., Alsterfjord M., Larsson C., and Sommarin M., 2001, Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes, Expression is demonstrated for two out of five novel genes, Plant Physiol., 127(1): 142-149.
- Sun H., Wu S., Zhang G., Jiao C., Guo S., Ren Y., Zhang J., Zhang H., Gong G., Jia Z., Zhang F., Tian J., Lucas W.J., Doyle J. J., Li H., Fei Z., and Xu Y., 2017, Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes, Mol. Plant, 10(10): 1293-1306.
- Tian F.X., Wang T., Xie Y.L., Zhang J., and Hu J.J., 2015, Genome-wide identification, classification, and expression analysis of 14–3–3 gene family in *Populus*, PLoS ONE, 10 (4): e0123225.
- Vision T.J., Brown D.G., and Tanksley S.D., 2000, The origins of genomic duplications in Arabidopsis, Science, 290(5499): 2114-2117.
- Wang J., Wang B., Jiang M.H., Li Y.J., Wang Z., Ren Y.P., and Zhang H., 2018, Cloning and expression analysis of HaFT-5

and HaFT-6 genes in 14-3-3 protein in *Haloxylon ammod-endron*, Jiyinzuxue yu Yingyong Shengwuxue (Genomics and Applied Biology), 37(5): 2021-2028. (王娇, 王波, 姜梦辉, 李亚婕, 王泽, 任燕萍, 张桦, 2018, 梭梭 14-3-3蛋白基因 HaFT-5、HaFT-6 克隆及表达分析, 基因组学与应用生物学, 37(5): 2021-2028.)

- Wei C.H., Zhang R.M., Yang X.Z., Zhu C.Y., Li H., Zhang Y., Ma J.X., Yang J.Q., and Zhang X., 2019, Comparative analysis of calcium-dependent protein kinase in Cucurbitaceae and expression studies in watermelon, Int. J. Mol. Sci., 20 (10): 2527.
- Wu S., Shamimuzaman M., Sun H.H., Salse J., Sui X.L., Wilder A., Wu Z.J., Levi A., Xu Y., Ling K.S., and Fei Z.J., 2017, The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a papaya ring-spot virus resistance locus, Plant J., 92(5): 963-975.
- Xu W.F., and Shi W.M., 2006, Expression profiling of the 14–3–3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (*Solanum lycopersicum*) roots: analysis by real-time RT-PCR, Ann. Bot., 98(5): 965-974.
- Yashvardhini N., Bhattacharya S., Chaudhuri S., and Sengupta D. N., 2018, Molecular characterization of the 14–3–3 gene family in rice and its expression studies under abiotic stress, Planta, 247(1): 229-253.
- Zhang H.F., Wei C.H., Yang X.Z., Chen H.J., Yang Y.C., Mo Y. L., Li H., Zhang Y., Ma J.X., Yang J.Q., and Zhang X., 2017, Genome-wide identification and expression analysis of calcium dependent protein kinase and its related kinase gene families in melon (*Cucumis melo* L.), PLoS ONE, 12(4): e0176352.