Boosting genome editing in plants with single transcript unit surrogate reporter systems

Xu Tang, Qiurong Ren, Xiaodan Yan, Rui Zhang, Li Liu, Qinqin Han, Xuelian Zheng, Yiping Qi, Hongyuan Song, Yong Zhang

PII: S2590-3462(24)00191-3

DOI: https://doi.org/10.1016/j.xplc.2024.100921

Reference: XPLC 100921

To appear in: PLANT COMMUNICATIONS

Received Date: 2 January 2024

Revised Date: 20 March 2024

Accepted Date: 11 April 2024

Please cite this article as: Tang, X., Ren, Q., Yan, X., Zhang, R., Liu, L., Han, Q., Zheng, X., Qi, Y., Song, H., Zhang, Y., Boosting genome editing in plants with single transcript unit surrogate reporter systems, *PLANT COMMUNICATIONS* (2024), doi: https://doi.org/10.1016/j.xplc.2024.100921.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Author(s).

Boosting genome editing in plants with single transcript unit surrogate reporter systems

Xu Tang^{1, 2, 3, 4#}, Qiurong Ren^{3, 5#}, Xiaodan Yan^{2, 3}, Rui Zhang⁴, Li Liu⁴, Qinqin Han⁴, Xuelian Zheng^{1,4},
Yiping Qi^{6, 7*}, Hongyuan Song^{2, 3*}, Yong Zhang^{1, 2, 3, 4*}

5 ¹Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science 6 Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest 7 University, Chongqing 400715, China; ²Key Laboratory of Agricultural Biosafety and Green Production of 8 Upper Yangtze River, Ministry of Education, Chongqing 400715, China; ³College of Horticulture and Landscape 9 Architecture, Southwest University, Chongqing 400715, China; ⁴Department of Biotechnology, School of Life 10 Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology 11 of China, Chengdu 610054, China; ⁵School of Synbiology, School of Life Science, Shanxi University, Taiyuan 030006, China; ⁶Department of Plant Science and Landscape Architecture, University of Maryland, College 12

13 Park, Maryland 20742, USA; ⁷Institute for Bioscience and Biotechnology Research, University of Maryland,

- 14 Rockville, Maryland 20850, USA
- [#]These authors contributed equally to this work

16 Running title: Improved surrogate reporter systems in plants

Short summary: Our study introduces multiple STU-SR systems to improve selecting genome-edited plants. By using identical sgRNAs for reporter and endogenous genes, a direct correlation between their editing activities is established. STU-SR systems employ strategies like single strand annealing and base editing to restore functional reporter genes post-genome editing in rice and *Brassica oleracea*, demonstrating their versatility and effectiveness in enhancing genome-edited plants.

22 *Corresponding authors:

Yong Zhang, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation,
 Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life

- 25 Sciences, Southwest University, Chongqing 400715, China; Email: <u>zhangyong916@swu.edu.cn</u>
- 26 Hongyuan Song, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River,
- 27 Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing
- 28 400715, China; Email: <u>yuahs@swu.edu.cn</u>
- 29 Yiping Qi, Department of Plant Science and Landscape Architecture, University of Maryland, College Park,
- 30 MD 20742, USA; Email: <u>viping@umd.edu</u>

31 Abstract: CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and 32 crop enhancement. However, the challenge of low editing activity complicates the identification of edited 33 events. In this study, we introduce multiple Single Transcript Unit Surrogate Reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems utilize the same sgRNAs designed for 34 endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity 35 and that of endogenous genes. Various strategies are employed to restore functional reporter genes post-36 37 genome editing, including efficient single strand annealing (SSA) for homologous recombination in STU-38 SR-SSA systems. STU-SR-BE systems leverage base editing to reinstate the start codon, enriching C-to-T 39 and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in 40 enhancing genome editing events in monocot rice, encompassing Cas9 nuclease-based targeted 41 mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 42 variants, such as the PAM-less SpRY, and are demonstrated to boost genome editing in *Brassica oleracea*, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for 43 enrichment of genome-edited plants. 44

Key words: CRISPR-Cas9, single transcript unit (STU), surrogate reporter (SR), single strand annealing
(SSA), cytosine base editing, adenine base editing

47

48 Introduction

49 Genome editing has become a powerful tool for modifying plant genomes, offering significant potential for 50 plant genomics research and crop genetic improvement (Zhang et al., 2019). Among these technologies, 51 the CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR Associated) 52 genome editing system has gained considerable attention due to its efficiency, precision, and ease to make. The CRISPR-Cas systems such as Cas9 or Cas12a (Tang and Zhang, 2023), guided by guide RNAs 53 54 (gRNAs), can target specific positions in the genome, enabling precise editing of targeted genes. Over the 55 years, genome editing techniques have continued to evolve and expand. Two revolutionary editing technologies have emerged in the field of genome editing: base editing and prime editing (Anzalone et al., 56 57 2019; Gaudelli et al., 2017; Komor et al., 2016). Base editing allows direct conversion of one base to another, while prime editing enables base transition, transversion and precise short indels without double-strand 58 59 breaks (DSB) and donor repair template (Anzalone et al., 2019). The introduction of these technologies further broadens the application scope of genome editing in plants, such as fine-tuning of plant gene 60 61 expression (Tang and Zhang, 2023; Zhou et al., 2023).

62 Despite the significant breakthroughs achieved with CRISPR-Cas technologies, there are still 63 challenges that limit their widespread applications in plants. One such challenge is that editing efficiency 64 may vary significantly with different gRNAs under different conditions. This instability of editing efficiency complicates the screening of editing events and increases the risk of experimental failure. High 65 genome editing efficiency based on CRISPR-Cas requires optimal delivery and expression of editing 66 67 reagents, typically via methods such as Agrobacterium-mediated transformation. In these experiments, it 68 often involves the use of selectable marker genes (typically antibiotic or herbicide resistance markers such 69 as kanamycin, hygromycin, Basta, etc.) to select for transgenic events. These transgenic marker genes can 70 help researchers identify which cells or tissues have successfully received the constructs, but they do not 71 directly reflect the editing status of the target gene. Therefore, researchers often need to further screen the 72 transformation events to determine which events have undergone the desired gene edits. As a result, if the 73 CRISPR-Cas expression levels are low or the editing efficiency at the target site is low in the transgenic 74 events, it becomes challenging to obtain editing events within the transgenic population. Unfortunately, this 75 happens to be the case when the conventional CRISPR-Cas9 system is constructed and used, where the selection marker, Cas9, and single guide RNA (sgRNA) cassettes are driven by separate promoters (Figure 76 77 1A) (Hassan et al., 2021).

78 Previously, surrogate reporters were demonstrated to enrich cells with targeted mutations by nucleases 79 such as zinc-finger nucleases (ZFNs) and TAL-effector nucleases (TALENs) (Kim et al., 2011). Later, this 80 strategy has been applied to enrich CRISPR-Cas9 based genome editing events in mammalian cells (Liao et al., 2015; Ramakrishna et al., 2014). More recently, similar surrogate reporter systems were established 81 82 in plants to enrich genome editing events by base editing (Xu et al., 2020b), prime editing (Li et al., 2020; Xu et al., 2020a), or Cas9 mediated mutagenesis via a viral vector system (Tian et al., 2022). Among these 83 84 surrogate reporter approaches, dedicated sgRNAs were employed to target the broken surrogate reporter 85 genes while different sgRNAs were used to edit endogenous genes of interest. Compared to the conventional CRISPR-Cas9 expression system (Figure 1A), these surrogate reporter systems allow for the 86 87 selection of Cas9 expression because only successful editing of the broken marker genes will result in 88 regenerated plants (Figure 1B). However, because different sgRNAs are used to edit surrogate reporter 89 genes and endogenous genes, these reporter systems only select for events with high CRISPR-Cas 90 expression levels but do not necessarily exhibit high genome editing activity at the endogenous target sites 91 (Figure 1B). Hence, such surrogate reporter systems fall short in directly reporting genome editing activity 92 for the genes of interest, highlighting a need for more integrated and efficient systems.

Addressing this gap, we introduce the Single Transcript Unit Surrogate Reporter (STU-SR) systems,
a leap forward in CRISPR-Cas9 technology (Tang et al., 2019; Tang et al., 2016). Unlike preceding methods,

95 the STU-SR systems utilize identical sgRNAs for both the reporter and target genes, directly linking 96 reporter gene editing with the modification of endogenous genes. This design not only simplifies the 97 selection process by ensuring that successful plant regeneration is intrinsically tied to effective genome editing but also enhances overall efficiency by coordinated expression of Cas9 and sgRNAs under a single 98 99 Pol II promoter (Figure 1C). Tailored for versatility across various plant species (Figure 1C), the STU-SR 100 systems' streamlined vector construction markedly improves user accessibility for diverse applications in 101 plant biotechnology. Demonstrated to significantly boost genome editing outcomes in both monocot (rice) 102 and dicot (Brassica oleracea) plants, these systems represent a significant advancement in our capacity to 103 precisely edit plant genomes. Thus, these innovative STU-SR systems improve editing efficiency and 104 reduce the efforts in screening genome edited plants. This approach opens new possibilities for improving 105 precise genome editing that can go beyond plants.

106 **Results**

107 Establishment of an STU-SR-SSA system for enriching editing events by CRISPR-Cas9

108 To effectively enrich CRISPR-Cas9 editing events, we tested an STU-SR strategy using the sgRNAs 109 designed to target endogenous genes of interest to edit the surrogate reporter genes. Specifically, we adopted 110 a broken reporter configuration that requires single strand annealing (SSA)-based homologous 111 recombination (HR) to reconstitute the functional reporter, such as a Hygromycin phosphotransferase (HYG) 112 reporter gene (Figure 2A). SSA was chosen because it is a very efficient HR repair mechanism in both 113 dividing and non-dividing cells, likely owning to its independence of exogenous repair template (Puchta, 114 2005; Roth et al., 2012; Zhang et al., 2013). Initially, we tested this concept in rice by inserting the 115 endogenous target site with the protospacer adjacent motif (PAM), called surrogate site, within the HYG 116 gene, flanked by 90 bp homologous sequences, to construct the HY::YG surrogate reporter gene. When the HY::YG surrogate reporter gene is cleaved by sgRNAs, it can be restored to a complete Hygromycin 117 118 phosphotransferase coding sequence via SSA, leading to the expression of functional Hygromycin 119 phosphotransferase. Simultaneously, the sgRNA targeting the endogenous gene may induce mutations at 120 the target gene of interest. This allows for the enrichment of editing events, achieved by selecting 121 hygromycin-resistant plants (Figure 2A). For the construction of the STU-SR-SSA vector in rice, we 122 employed a tail-to-tail design of STU Cas9 expression unit and HY::YG reporter expression unit (Figure 123 2B). This design allows simultaneous cloning of sgRNAs and their target sites into the STU Cas9 expression unit and the HY::YG reporter expression unit, respectively. These corresponding DNA fragments can be 124 125 amplified and ligated into the STU-SR backbone vector after enzymatic digestion with BsaI and SpeI, resulting in the STU-SR expression vectors (Figure 2B). 126

127 To test the effectiveness of the STU-SR-SSA system, we compared the editing efficiencies of the STU-128 SR-SSA system with the STU CRISPR-Cas9 control system at three endogenous rice gene target sites in 129 stable transgenic rice plants (Figure 2C). The results showed that the editing efficiencies for the STU system at the OsPDS-sgRNA01, OsPDS-sgRNA02, and OsDEP1-sgRNA01 loci were 56.3%, 77.3%, and 77.8%, 130 respectively. In contrast, the STU-SR-SSA system achieved 100% editing efficiency at all three sites, 131 132 representing an enhancement of editing efficiency by 28.5% to 77.6% compared to the STU system. The 133 biallelic editing efficiencies at these three loci increased from 43.8%-72.2% to 80%-100%, with OsPDSsgRNA02 and OsDEP1-sgRNA01 both reaching 100% biallelic editing efficiency (Figure 2C, 134 135 Supplemental Figure 1). Sanger sequencing results confirmed successful editing at both the HY::YG 136 reporter gene and the endogenous gene loci (Figure 2D-2E). OsPDS and OsDEP1 biallelic mutant plants 137 exhibited photobleaching and dwarf phenotype, respectively (Figure 2F-2G), consistent with our previous

report on the knockout phenotypes of both genes (Lowder et al., 2015).

Previously, we demonstrated that SpRY could achieve PAM-less genome editing in plants (Ren et al., 139 140 2021b). However, the overall editing efficiency of SpRY is lower than the wildtype SpCas9, likely due to 141 its PAM-less nature and self-editing when delivery in DNA constructs (Ren et al., 2021b; Walton et al., 142 2020). It is very appealing to further improve the SpRY expression system for more robust editing outcomes 143 in plants. We investigated whether the STU-SR-SSA system could enhance the editing efficiency of SpRY. The OsPDS-sgRNA04 locus was used for testing with stable rice transformation, and the results showed 144 145 that the STU-SR-SSA system increased editing efficiency by 33.3% compared to the STU system (100% vs. 75%) and enhanced biallelic editing efficiency by 53.8% (100% vs. 65%) (Figure 2C, Supplemental 146 Figure 2). Similarly, Sanger sequencing results confirmed successful editing at both the HY::YG reporter 147 gene and the endogenous target gene, OsPDS (Figure 2D-E). These results collectively indicate that the 148 149 STU-SR-SSA system works effectively with Cas9 and its variants for improved genome editing in rice.

150 Enrichment of genome editing events independent of T-DNA copy number

151 In the process of Agrobacterium-mediated stable transformation, the integration of one or more T-DNA copies can occur (De Buck et al., 2009; Jupe et al., 2019; Lee and Gelvin, 2008). When a single T-DNA 152 153 copy is inserted, the HY::YG reporter gene should be corrected, resulting in a single band in the PCR 154 detection (Figure 3A). However, when two or more T-DNA copies are integrated, the HY::YG reporter 155 genes may experience the correction of one or multiple copies or even all copies, corresponding to one or two bands in the PCR detection (Figure 3A). We conducted PCR detection on 8 randomly selected T0 156 157 plants per STU-SR-SSA construct. At the OsPDS-sgRNA04 site edited by SpRY, two plants (lines 1 and 158 5) showed a single HYG band, exhibiting complete correction of the HY::YG reporter gene(s) (Figure 3B).

159 Four plants (lines 2, 3, 6 and 7) showed both HYG and HY::YG bands with nearly equivalent intensity,

160 suggesting these lines carry two copy of HY::YG reporters and only one was corrected (Figure 3B). For 161 lines 4 and 8, the corrected HYG band was faint and the HY:: YG was much brighter, indicating that multiple 162 copy of the HY::YG reporter were present in these two lines and most of them remained unedited or not corrected (Figure 3B). The presence of edited and/or unedited alleles of HY::YG and editing at the 163 endogenous site were confirmed by Sanger sequencing (Figure 3C). For the OsPDS-sgRNA01 and OsPDS-164 165 sgRNA02 plants, the HY::YG reporter gene(s) was fully restored in all cases (Supplemental Figure 3). 166 Regarding the 8 OsDEP1-sgRNA01 T0 plants, five plants exhibited complete correction of the HY::YG reporter gene(s), while the other three plants showed partial copy correction (Supplemental Figure 3). 167 168 Hence, regardless the copy number of the HY::YG reporter in the regenerated plants, correction of at least 169 one broken reporter copy seems sufficient to report robust genome editing at the endogenous loci. These 170 data indicate that the STU-SR system is capable of enriching gene editing events regardless of the number 171 of T-DNA copies, providing flexibility in its application.

172 Application of STU-SR-BE systems for enriching base editing events

173 Base editing, either via cytosine base editors (CBEs) or adenine base editors (ABEs), allows for the 174 transition of one base to another without introducing DNA double-strand breaks. Base editing provides 175 greater precision than targeted mutagenesis by Cas nucleases (Molla et al., 2021; Ren et al., 2021a; Ren et 176 al., 2021b; Wu et al., 2022a). Therefore, we aimed to investigate whether the STU-SR system could also 177 effectively enrich base editing events. Unlike the SSA enrichment strategy used for enriching CRISPR-178 Cas9 editing events, we developed STU-SR-CBE and STU-SR-ABE for enriching base editing events. In 179 both cases, the surrogate reporter gene was created by strategically integrating the endogenous target site with the PAM (also known as the surrogate site) to the beginning of the hygromycin resistance (HYG) 180 coding sequence, with removing the original ATG start codon (hyg-ATG) (Figure 4A). For the CBE system, 181 182 when the 5' end of the sgRNA contains "ACG," we can directly add the surrogate site in front of the hyg⁻ ^{ATG} coding sequence. If "CAC" is present at the 5' end of the sgRNA, we will add the reverse complementary 183 sequence of the surrogate site before hyg-ATG. In both cases, "ACG" and "CAC" must be in the same reading 184 frame as hyg-ATG (Figure 4A). If needed, appropriate bases should be added between the surrogate site and 185 hyg^{-ATG} to ensure they are in the same reading frame. When C-to-T editing occurs in the base C of "ACG" 186 or the base C close to PAM in "CAC", a new ATG start codon is generated, initiating the translation of the 187 188 HYG gene. For the ABE system, if the sgRNA's 5' end contains "ATA," we can directly add the surrogate site in front of hyg-ATG. When A-to-G editing occurs in the base A near PAM in "ATA", a new ATG start 189 190 codon will be generated, initiating the translation of the HYG gene (Figure 4A). If the 5' end of the sgRNA 191 lacks the corresponding sequence, such as "ACG" or "CAC" for cytosine base editing, or "ATA" for adenine 192 base editing, one will need to adjust the protospacer sequence at the PAM distal end, allowing the presence

of a 1-2 bp mismatch to form the corresponding sequence, as base editors tolerate most of the single or double mismatches at the distal end (Kim et al., 2019; Talas et al., 2021). Upon successful expression of the active hygromycin phosphotransferase and potential base editing at the surrogate site, hygromycinresistant plants would be obtained, which presumably should also carry high frequency base editing at the endogenous target site because the same sgRNA is used for editing both sites (Figure 4A).

198 In our demonstration, we used a PmCDA1-based CBE (Nishida et al., 2016; Tang et al., 2019) because 199 it is a highly efficient CBE in plants with undetectable genome-wide off-target effects (Randall et al., 2021; 200 Ren et al., 2021a). For A-to-G editing, ABE8e was chose due to its high editing activities (Lapinaite et al., 201 2020; Richter et al., 2020). Also, ABE8e's genome-wide off-target effects have been comprehensively 202 studies in plants (Sretenovic et al., 2023; Wu et al., 2022b). Similar to the STU-SR-SSA system, we designed the CBE/ABE expression cassette and hyg-ATG expression cassette tail-to-tail for ease of cloning 203 sgRNAs and surrogate sites into the STU-SR-BE backbone. Using forward and reverse oligos as primers, 204 205 we amplified fragments from the STU-SR-BE backbones. After digestion with BsaI and AvrII (KpnI), these 206 PCR fragments were ligated into the STU-SR-BE backbone vectors cut with the same enzymes, resulting 207 in the STU-SR-CBE and STU-SR-ABE expression vectors (Figure 4B). Our initial experiments evaluated 208 the enrichment efficiency of STU-SR-CBE at four rice endogenous target sites. The results demonstrated 209 that T0 transgenic plants generated by STU-SR-CBE consistently exhibited the correction of the surrogate 210 reporter gene (Figure 4C). At the OsPDS-sgRNA02 site, the STU-SR-CBE system showed a 2.09-fold 211 enhancement in editing efficiency compared to the CBE system (11.1% vs 5.3%). Similarly, at the OsPDSsgRNA07 site, a 2.30-fold improvement was observed with STU-SR-CBE over STU-CBE (88.9% vs 212 38.6%). At the OsCDC48-sgRNA01 site, 1.53-fold enhancement in editing efficiency was observed with 213 214 STU-SR-CBE over STU-CBE (80% vs 52.4%). At OsDEP1-sgRNA03 site, the STU-CBE system already 215 achieved 95.5% editing efficiency, and STU-SR-CBE further improved it to 100% editing efficiency 216 (Figure 4C). Sanger sequencing confirmed successful C-to-T editing at both the reporter gene and 217 endogenous gene loci (Figure 4D, Supplemental Figure 4).

We also expanded the editing range by replacing Cas9 in the STU-SR-CBE system with SpRY, 218 generating STU-SR-CBE_SpRY for PAM-less C-to-T base editing. Testing at the OsPDS-sgRNA04 site, 219 220 the STU-SR-CBE SpRY system showed a 1.98-fold increase in editing efficiency compared to STU-221 CBE_SpRY (9.5% vs 4.8%) (Figure 4C, 4E, Supplemental Figure 4). Similarly, we also generated STU-222 SR-SpRY-ABE for enriching PAM-less A-to-G base editing. At the OsMPK6-sgRNA01 site, we observed 223 a 3.02-fold enhancement in editing efficiency with STU-SR-ABE_SpRY (13.6% vs 4.5%) (Figure 4C, 4F, 224 Supplemental Figure 4). Together, the STU-SR-BE systems effectively enriched base editing events in 225 every case tested and the systems can be combined with SpRY to expand the target range in base editing.

226 Enhanced genome editing in *Brassica oleracea* with the STU-SR-SSA system

227 To further validate the versatility of the STU-SR system for enriching genome editing events in other plant 228 species, we chose *Brassica oleracea*, a dicotyledonous plant. In *Brassica oleracea* transformation, the commonly used selection marker is the Bialaphos resistance (BAR) gene. Therefore, we integrated 229 230 endogenous gene editing sites into the BAR gene, flanked by homologous sequences, to construct the 231 BA::AR surrogate reporter gene. The STU Cas9 expression unit and the BA::AR reporter expression unit 232 were designed to be tail to tail arranged, facilitating the construction of STU-SR-SSA expression vectors 233 that utilize the BAR selection marker gene (Figure 5A). When the BA::AR surrogate reporter gene is cleaved 234 by a targeting sgRNA, it can be restored to a functional *BAR* gene through SSA homologous recombination. 235 This reconstitution enables the expression of the active phosphinothricin acetyltransferase (PAT) enzyme. 236 Simultaneously, the same sgRNA will target the endogenous locus to render editing. By selecting for Basta-237 resistant plants, we could achieve the enrichment of events where mutations occurred at the endogenous 238 target gene (Figure 5A).

239 We selected three endogenous target loci, BoPDS-sgRNA01, BoPDS-sgRNA02, and BoBIK-240 sgRNA01, and compared the editing efficiencies in stable transgenic plants. Like what we did in rice, we 241 compared the STU-SR-SSA system to the STU system. Transgenic TO Brassica oleracea plants were 242 obtained with Agrobacterium-mediated transformation. Our results revealed that at the BoPDS-sgRNA01 site, the STU system did not generate any mutations among 60 T0 lines, whereas the STU-SR-SSA system 243 244 achieved editing in 35% of the 80 T0 plants. At the BoPDS-sgRNA02 site, the STU-SR-SSA system exhibited a 3.34-fold improvement in editing efficiency compared to the STU system (5% vs 16.7%). 245 Moreover, at the BoBIK-sgRNA01 site, the STU-SR-SSA system demonstrated a remarkable 48.4% 246 increase in editing efficiency, reaching nearly 80% (Figure 5B). Hence, the STU-SR-SSA system 247 248 effectively enriched editing events at all three endogenous target sites (Figure 5B). Based on phenotypic 249 analysis of the regenerated T0 plants, the STU-SR-SSA system generated biallelic and homozygous 250 mutations much more frequently than the STU system, either for BoPDS (Figure 5C) and BoBIK (Figure 251 5D), where the loss of function phenotypes as photobleaching and dwarfism respectively were previously 252 reported (Ma et al., 2019). Further validation through Sanger sequencing confirmed the restoration of the 253 BA::AR surrogate reporter gene (Figure 5E) and demonstrated successful editing at the endogenous gene 254 loci (Figure 5F). In summary, our experiments in Brassica oleracea demonstrate the effectiveness of the 255 STU-SR-SSA system in enriching gene editing events in dicotyledonous plants.

256

257

258 Discussion

259 CRISPR-Cas based genome editing systems have been rapidly adopted by plant researchers to investigate 260 gene function and develop improved crops. As DNA targeting and editing is programmed by gRNAs, it is inevitable that editing efficiency at different target sites may vary significantly. Not to mention, chromatin 261 262 status and epigenetic features also play a role in influencing editing outcomes (Liu et al., 2019; Weiss et al., 263 2022). Currently, we have not fully understood how each CRISPR-Cas system functions optimally in plants 264 and the rules for designing the most efficient gRNAs for each application. Furthermore, the target sites may 265 be pre-defined in base editing or prime editing experiments and there is lack of flexibility of altering the 266 protospacer sequences in order to boost the genome editing activity. Considering these circumstances, it is 267 immensely significant if we can enrich gene editing events. It will help accelerate the pace of scientific 268 investigations and plant breeding initiatives, enabling researchers to obtain edited plants more swiftly and efficiently, thereby saving valuable time and resources. In the context of complex plant genomes, where 269 270 specific editing events can be exceedingly rare and challenging to obtain, enriching these events substantially increases the likelihood of achieving the desired genetic modifications, particularly for 271 272 intricate editing tasks.

273 Previously, surrogate reporter systems have been developed to enrich genome editing outcomes for 274 targeted mutagenesis by CRISPR-Cas9 (Tian et al., 2022), base editing (Xu et al., 2020b), and prime editing 275 (Li et al., 2020; Xu et al., 2020a). However, these surrogate reporter systems each rely on a pre-defined 276 sgRNA to revert the broken reporter to a functional one. These systems thus can enrich transgenic lines 277 with high levels of Cas expression but cannot necessarily enrich lines with high sgRNA expression and activity for the endogenous target sites (Figure 1B). We reasoned that an ideal and efficient surrogate 278 reporter system would allow for direct selection of edited lines based on the sgRNAs targeting the genes of 279 280 interest (Figure 1C). However, at a first glance, it is very challenging to develop such surrogate report 281 systems. After all, the sequences of the reporter genes are pre-defined, but the target sequences would vary 282 from experiment to experiment, depending on the genes of interest. We employed different strategies to 283 solve this problem. To develop surrogate reporter systems for CRISPR-Cas9, we used single strand 284 annealing (SSA) that relies on the tandem repeat sequences flanking the DNA DSB, as SSA is an efficient DSB repair mechanism conserved in a variety of organisms, including yeast (Paques and Haber, 1999), 285 286 humans (Bhargava et al., 2016), and plants (Puchta, 2005; Zhang et al., 2013). Indeed, our STU-SR-SSA reporter systems, based on different selection markers, worked well and significantly enriched editing 287 288 events in rice (Figure 2) and Brassica oleracea (Figure 5). Furthermore, we found that the STU-SR-SSA 289 reporter systems worked robustly, regardless of the copy number of T-DNA (Figure 3). There data suggest 290 that the SSA-based surrogate systems are widely applicable in plants. It should be compatible to biolistic

transformation methods which often generate transgenic plants with multiple copies of the transgene.
Although we demonstrated the STU-SR-SSA systems with CRISPR-Cas9, the same SSA principle can be
used for developing surrogate reporter systems for other CRISPR systems such as CRISPR-Cas12a (Tang
et al., 2017; Zhong et al., 2018), CRISPR-Cas12b (Ming et al., 2020) and compact CRISPR-Cas12j2 (Liu
et al., 2022).

296 Compared to CRISPR-Cas mediated targeted mutagenesis, base editing and prime editing are more 297 precise genome editing tools for installing base-precision changes in the genomes (Anzalone et al., 2020). 298 However, these genome editing tools often suffer from low editing efficiency, making their use in plant 299 applications more laborious and riskier (Molla et al., 2021; Tang et al., 2020). In this study, we developed 300 STU-SR-CBE and STU-SR-ABE systems to enrich C-to-T and A-to-G base editing events, respectively. 301 In our strategy, the surrogate site (encompassing the protospacer and PAM) was added to the 5' end of the 302 reporter gene with its original start codon deleted. The start codon-less reporter gene is revived when a start codon is created via base editing (Figure 4A). Our data showed such STU-SR-BE systems significantly 303 enriched base editing events, and the systems are compatible with Cas9 variants such as SpRY (Figure 4C). 304 It is of note that the target 'C' for the CBE reporter and 'A' for the ABE reporter resides at 2nd and 3rd 305 306 position of the protospacer respectively (Figure 4A), which are not necessary within the optimal base 307 editing windows for all base editors. However, the fact base editing at these positions can happen in the 308 base editors tested in this study suggests the STU-SR-BE strategies could work for many, if not all base 309 editors.

Prime editing has been under constant improvement in plants. For example, prime editing becomes a 310 relatively reliable tool for precise genome editing in monocot plants such as rice, thanks to innovative 311 strategies employed for these improvements (Gupta et al., 2023; Jiang et al., 2022; Lin et al., 2021; Qiao et 312 313 al., 2023; Tang et al., 2020; Xu et al., 2022). However, little success has been reported for prime editing in 314 dicot plants (Lu et al., 2021). Due to low editing efficiency, prime editing could greatly benefit from surrogate reporter-based enrichment systems, as demonstrated recently (Li et al., 2020; Li et al., 2022; Xu 315 316 et al., 2020a). Since the targeted DNA changes in prime editing vary from site to site and the editing is 317 more complex than base editing, a different strategy is needed to develop authentic surrogate reporters that 318 install the surrogate site into the reporter gene. We envision that the surrogate site can be added to the start 319 codon-less reporter gene, as the case for base editing reporter systems. Specific prime editing guide RNA 320 (pegRNA) needs to be designed to create a start codon, likely around or downstream the Cas9 cleavage site 321 (or 3 bp upstream of the PAM), as that region is most amenable to prime editing (Sretenovic and Qi, 2022). 322 This strategy in principle should work and is worth testing. Such surrogate reporter-based prime editing 323 systems may enable reliable prime editing in dicot plants in the future.

324 In summary, we developed multiple Single Transcript Unit-Surrogate Reporter (STU-SR) systems for 325 CRISPR-Cas mediated targeted mutagenesis, cytosine base editing, and adenine base editing in plants. The 326 successful application of the STU-SR system in rice (a monocot) and Brassica oleracea (a dicot) 327 demonstrates its versatility and effectiveness, indicating the potential to be applied across a broad spectrum 328 of plant species. Continued improvement and expansion of this technology are expected to enable a wide 329 range of genome editing applications in plants. Our successful STU-SR strategies reported here may serve 330 as a valuable reference and inspiration for the development of other genome editing technologies to 331 augment plant research and applications.

332 Experimental procedures

333 Vector construction

The STU-SR systems used in this study were generated based on these plasmids: pTX172 (Addgene 334 335 #89259), pGEL031 (Addgene #137900), pGEL035 (Addgene #137903), pYPQ166-SpRY (Addgene 336 #161520), and pYPQ262B-ABE8e (Addgene #161524). The rice STU-SR-SSA system was created by 337 assembling a PCR-amplified backbone fragment into pTX172 (Zhou et al., 2022) via Gibson Assembly, 338 removing the original HYG expression cassette. Subsequently, the HY::YG surrogate reporter gene was 339 obtained through overlap PCR. Together with the 35S promoter and 35S terminator, it was assembled via 340 Gibson Assembly into the vector behind the STU-Cas9 expression cassette, resulting in the construction of the STU-SR-SSA backbone vector pGEL901 (Addgene #218546). Similarly, the STU-SR-SSA_SpRY 341 342 backbone vector pGEL902 (Addgene #218547) was constructed by replacing the Cas9 and HYG expression 343 units on pGEL031 with the PCR-amplified SpRY from pYPQ166-SpRY and the HY::YG surrogate reporter gene expression unit. For the STU-SR-CBE system, the HYG expression cassette in pGEL035 was removed. 344 Subsequently, the hyg^{-ATG} surrogate reporter unit was cloned at the SacI site of pGEL035 to produce the 345 STU-SR-CBE backbone pGEL903 (Addgene #218548). The PCR-amplified SpRY fragment from 346 347 pYPQ166-SpRY was then used to replace the Cas9 segment, resulting in the generation of the STU-SR-348 CBE_SpRY backbone vector pGEL904 (Addgene #218549). Similarly, the STU-SR-ABE_SpRY 349 backbone vector pGEL905 (Addgene #218550) was constructed by replacing the CBE and HYG expression units on pGEL035 with the PCR-amplified SpRY-ABE8e from pYPQ262B-ABE8e and the hyg-ATG 350 351 surrogate reporter unit. The ZmUbi1 promoter and HY::YG surrogate reporter gene on the rice STU-SR-352 SSA system were replaced with the 35S promoter and BA:AR-2A-MYB surrogate reporter gene, resulting in the construction of the Brassica oleracea STU-SR-SSA backbone vector pGEL906 (Addgene #218551). 353 354 The construction of the STU-SR system expression vector, as shown in Figures 2B and 4B, begins with the 355 specific cleavage of the vector backbone using restriction endonucleases to generate sticky ends.

356 Subsequently, forward and reverse oligonucleotides are designed to incorporate flanking restriction enzyme 357 sites, sgRNA sequences, and surrogate sites. These oligonucleotides are amplified via PCR to obtain 358 insertion fragments containing the required sgRNA, the terminator of the Cas9 expression unit, and part of the surrogate reporter unit (including corresponding surrogate sites). The PCR products are then digested 359 360 with the corresponding restriction endonucleases to create ends that are complementary to the sticky ends 361 of the vector backbone. Ligation of these digested fragments to the vector backbone via T4 DNA ligase 362 facilitates the assembly of the expression vector by the pairing of compatible ends. The primer sequences 363 are listed in Supplemental Table 1. All vectors used in this study are available from Addgene.

364 Rice stable transformation

365 The Oryza sativa Japonica cultivar Nipponbare was used in this study. Rice stable transformation was carried out following previously published protocols (Zheng et al., 2023; Zhou et al., 2017). Binary vectors 366 367 were transformed into Agrobacterium strain EHA105 using the freeze-thaw method. Rice seeds were 368 sterilized and cultured on N6-D solid medium in the light at 32°C for 2-3 weeks. Rice calli were immersed 369 in the Agrobacterium suspension, dried on filter paper, and co-cultured on solid medium at 25°C in the dark 370 for 3 days. Infected calli were washed and transferred to N6D-S screening medium at 32°C for 2 weeks. 371 Actively growing calli were moved to RE-III regenerative medium at 28°C with a 16-hour light/8-hour dark 372 cycle for 3-4 weeks. Regenerated seedlings were transferred to rooting medium for 2-3 weeks. Transgenic 373 rice plants were grown in a growth chamber at 28°C under a 16-hour light/8-hour dark cycle.

374 Brassica oleracea stable transformation

The Brassica oleracea line "159", previously developed in our laboratory, served as the plant material. 375 376 Agrobacterium mediated transformation was carried out as previous described (Ma et al., 2019). Briefly, 377 hypocotyls from 7- to 10-day-old seedlings were chosen as the target explants and were pre-cultured on callus initiation medium for 2 days. Subsequently, the preincubated hypocotyls were immersed in an 378 379 Agrobacterium-infection buffer and cocultivated in the dark at 25°C for 48 hours. After cocultivation, the 380 explants were transferred to medium optimized for callus and shoot induction. Once the regenerating shoots 381 reached a height of 1-2 cm, they were carefully moved to rooting medium to obtain transgenic T0 plants. 382 Transgenic plants were transplanted into soil.

383 Mutagenesis analysis

384 Genomic DNA was extracted from transgenic plants using the cetyltrimethylammonium bromide (CTAB)

method as previous reported (Zheng et al., 2023; Zhou et al., 2022), and subsequent PCR amplification of

the target gene was performed with specific primers as listed in Supplemental Table 1. To detect mutations,

both Single-Strand Conformation Polymorphism (SSCP) analysis (Zheng et al., 2016) and Sanger
sequencing were employed (Zhou et al., 2019). The genotypes of T0 mutant lines were analyzed using the
CRISPR-GE DSDecodeM software (Xie et al., 2017).

390 Author Contributions

- 391 Y.Z. proposed the project and designed the experiments. X. T., Q. R. and R.Z. constructed all the plasmids.
- 392 X.T., Q.R., L.L., Q.H. and X.Z. performed the rice stable transformation. X.T., Q.R. and R.Z. analyzed the
- 393 rice T0 plants. X.Y. and H.S. performed the *Brassica oleracea* stable transformation and analyzed the
- 394 Brassica oleracea T0 plants. Y.Z., Y.Q., X.T. and H.S. analyzed the data and wrote the manuscript with
- input from other authors. All authors read and approved the final version of the manuscript.

396 Acknowledgements

This work was supported by the National Key Research and Development Program of China (award no. 397 2023YFD1202900), the National Science Foundation of China (award no. 32270433 and 32101205), the 398 399 Natural Science Foundation of Sichuan Province (award no. 2022NSFSC0143) to Y.Z. and X.T., Joint 400 Science and Technology Project between Sichuan Province and Chongqing Municipality (award no. CSTC2021JSCX-CYLHX0001) to H.S. and X.T., Modern Seed Industry Project of Chongqing Municipal 401 Science and Technology Bureau (award no. CSTB2023TIAD-KPX0025) to H.S., the National Science 402 Foundation of China (award no. 32301248) to Q.R., the National Science Foundation of China (award no. 403 404 32072045) to X.Z. It also supported by the NSF Plant Genome Research Program (award no. IOS-2029889 and IOS-2132693) to Y.Q. 405

406 Declaration of Interests

407 The authors declare no competing interests.

408 References

- Anzalone, A.V., Koblan, L.W. and Liu, D.R. (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. *Nat Biotechnol* 38, 824-844.
- Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson,
 C., Newby, G.A., Raguram, A. and Liu, D.R. (2019) Search-and-replace genome editing without doublestrand breaks or donor DNA. *Nature* 576, 149-157.
- Bhargava, R., Onyango, D.O. and Stark, J.M. (2016) Regulation of Single-Strand Annealing and its
 Role in Genome Maintenance. *Trends Genet* 32, 566-575.
- De Buck, S., Podevin, N., Nolf, J., Jacobs, A. and Depicker, A. (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. *Plant J* 60, 134-145.
- Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I. and Liu, D.R. (2017)
 Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. *Nature* 551, 464 471.
- Gupta, A., Liu, B., Chen, Q.J. and Yang, B. (2023) High-efficiency prime editing enables new strategies for broad-spectrum resistance to bacterial blight of rice. *Plant Biotechnol J* 21, 1454-1464.
- Hassan, M.M., Zhang, Y., Yuan, G., De, K., Chen, J.G., Muchero, W., Tuskan, G.A., Qi, Y. and Yang,
 X. (2021) Construct design for CRISPR/Cas-based genome editing in plants. *Trends Plant Sci* 26, 1133 1152.
- Jiang, Y., Chai, Y., Qiao, D., Wang, J., Xin, C., Sun, W., Cao, Z., Zhang, Y., Zhou, Y., Wang, X.C. and Chen, Q.J. (2022) Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous TAP-IVS mutation in EPSPS. *Mol Plant* 15, 1646-1649.
- Jupe, F., Rivkin, A.C., Michael, T.P., Zander, M., Motley, S.T., Sandoval, J.P., Slotkin, R.K., Chen, H.,
 Castanon, R., Nery, J.R. and Ecker, J.R. (2019) The complex architecture and epigenomic impact of
 plant T-DNA insertions. *PLoS Genet* 15, e1007819.
- Kim, D., Kim, D.E., Lee, G., Cho, S.I. and Kim, J.S. (2019) Genome-wide target specificity of CRISPR
 RNA-guided adenine base editors. *Nat Biotechnol* 37, 430-435.
- Kim, H., Um, E., Cho, S.R., Jung, C., Kim, H. and Kim, J.S. (2011) Surrogate reporters for enrichment of cells with nuclease-induced mutations. *Nat. Methods* 8, 941-943.
- Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. and Liu, D.R. (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature* 533, 420-424.
- Lapinaite, A., Knott, G.J., Palumbo, C.M., Lin-Shiao, E., Richter, M.F., Zhao, K.T., Beal, P.A., Liu, D.R. and Doudna, J.A. (2020) DNA capture by a CRISPR-Cas9-guided adenine base editor. *Science* 369, 566-571.
- Lee, L.-Y. and Gelvin, S.B. (2008) T-DNA Binary Vectors and Systems. *Plant Physiol.* **146**, 325-332.
- Li, H., Li, J., Chen, J., Yan, L. and Xia, L. (2020) Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing. *Mol Plant* 13, 671-674.
- Li, H., Zhu, Z., Li, S., Li, J., Yan, L., Zhang, C., Ma, Y. and Xia, L. (2022) Multiplex precision gene editing by a surrogate prime editor in rice. *Mol Plant* 15, 1077-1080.
- Liao, S., Tammaro, M. and Yan, H. (2015) Enriching CRISPR-Cas9 targeted cells by co-targeting the
 HPRT gene. *Nucleic Acids Res* 43, e134.
- Lin, Q., Jin, S., Zong, Y., Yu, H., Zhu, Z., Liu, G., Kou, L., Wang, Y., Qiu, J.L., Li, J. and Gao, C. (2021)
 High-efficiency prime editing with optimized, paired pegRNAs in plants. *Nat Biotechnol* 39, 923-927.

- Liu, G., Yin, K., Zhang, Q., Gao, C. and Qiu, J.L. (2019) Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. *Genome Biol* 20, 145.
- Liu, S., Sretenovic, S., Fan, T., Cheng, Y., Li, G., Qi, A., Tang, X., Xu, Y., Guo, W., Zhong, Z., He, Y.,
 Liang, Y., Han, Q., Zheng, X., Gu, X., Qi, Y. and Zhang, Y. (2022) Hypercompact CRISPR-Cas12j2
 (CasPhi) enables genome editing, gene activation, and epigenome editing in plants. *Plant Commun* 3, 100453.
- Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., 3rd, Tang, X., Zheng, X., Voytas, D.F., Hsieh, T.F.,
 Zhang, Y. and Qi, Y. (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and
 transcriptional regulation. *Plant Physiol* 169, 971-985.
- Lu, Y., Tian, Y., Shen, R., Yao, Q., Zhong, D., Zhang, X. and Zhu, J.K. (2021) Precise genome modification in tomato using an improved prime editing system. *Plant Biotechnol J* 19, 415-417.
- Ma, C., Zhu, C., Zheng, M., Liu, M., Zhang, D., Liu, B., Li, Q., Si, J., Ren, X. and Song, H. (2019)
 CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous
 tRNA-processing system. *Horticulture Research* 6.
- Ming, M., Ren, Q., Pan, C., He, Y., Zhang, Y., Liu, S., Zhong, Z., Wang, J., Malzahn, A.A., Wu, J., Zheng, X., Zhang, Y. and Qi, Y. (2020) CRISPR-Cas12b enables efficient plant genome engineering. *Nat Plants* 6, 202-208.
- Molla, K.A., Sretenovic, S., Bansal, K.C. and Qi, Y. (2021) Precise plant genome editing using base editors and prime editors. *Nat Plants* 7, 1166-1187.
- Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A.,
 Araki, M., Hara, K.Y., Shimatani, Z. and Kondo, A. (2016) Targeted nucleotide editing using hybrid
 prokaryotic and vertebrate adaptive immune systems. *Science* 353.
- Paques, F. and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks
 in Saccharomyces cerevisiae. *Microbiol Mol Biol Rev* 63, 349-404.
- Puchta, H. (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. *J Exp Bot* 56, 1-14.
- Qiao, D., Wang, J., Lu, M.H., Xin, C., Chai, Y., Jiang, Y., Sun, W., Cao, Z., Guo, S., Wang, X.C. and Chen, Q.J. (2023) Optimized prime editing efficiently generates heritable mutations in maize. *J Integr Plant Biol* 65, 900-906.
- Ramakrishna, S., Cho, S.W., Kim, S., Song, M., Gopalappa, R., Kim, J.S. and Kim, H. (2014) Surrogate reporter-based enrichment of cells containing RNA-guided Cas9 nuclease-induced mutations. *Nat Commun* 5, 3378.
- Randall, L.B., Sretenovic, S., Wu, Y., Yin, D., Zhang, T., Eck, J.V. and Qi, Y. (2021) Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. *Plant Physiol* 187, 73-87.
- Ren, Q., Sretenovic, S., Liu, G., Zhong, Z., Wang, J., Huang, L., Tang, X., Guo, Y., Liu, L., Wu, Y.,
 Zhou, J., Zhao, Y., Yang, H., He, Y., Liu, S., Yin, D., Mayorga, R., Zheng, X., Zhang, T., Qi, Y. and
 Zhang, Y. (2021a) Improved plant cytosine base editors with high editing activity, purity, and specificity. *Plant Biotechnol J* 19, 2052-2068.
- Ren, Q., Sretenovic, S., Liu, S., Tang, X., Huang, L., He, Y., Liu, L., Guo, Y., Zhong, Z., Liu, G., Cheng,
 Y., Zheng, X., Pan, C., Yin, D., Zhang, Y., Li, W., Qi, L., Li, C., Qi, Y. and Zhang, Y. (2021b) PAMless plant genome editing using a CRISPR-SpRY toolbox. *Nat Plants* 7, 25-33.

- Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan,
 L.W., Zeng, J., Bauer, D.E., Doudna, J.A. and Liu, D.R. (2020) Phage-assisted evolution of an adenine
 base editor with improved Cas domain compatibility and activity. *Nat Biotechnol* 38, 883-891.
- Roth, N., Klimesch, J., Dukowic-Schulze, S., Pacher, M., Mannuss, A. and Puchta, H. (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. *Plant J* 72, 781-790.
- 498 Sretenovic, S., Green, Y., Wu, Y., Cheng, Y., Zhang, T., Van Eck, J. and Qi, Y. (2023) Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. *Plant Physiol* 193, 291-303.
- Sretenovic, S. and Qi, Y. (2022) Plant prime editing goes prime. *Nat Plants* 8, 20-22.
- Talas, A., Simon, D.A., Kulcsar, P.I., Varga, E., Krausz, S.L. and Welker, E. (2021) BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. *Nat. Commun.* 12, 6353.
- Tang, X., Lowder, L.G., Zhang, T., Malzahn, A.A., Zheng, X., Voytas, D.F., Zhong, Z., Chen, Y., Ren,
 Q., Li, Q., Kirkland, E.R., Zhang, Y. and Qi, Y. (2017) A CRISPR-Cpf1 system for efficient genome
 editing and transcriptional repression in plants. *Nat Plants* 3, 17018.
- Tang, X., Ren, Q., Yang, L., Bao, Y., Zhong, Z., He, Y., Liu, S., Qi, C., Liu, B., Wang, Y., Sretenovic, S., Zhang, Y., Zheng, X., Zhang, T., Qi, Y. and Zhang, Y. (2019) Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. *Plant Biotechnol J* 17, 1431-1445.
- Tang, X., Sretenovic, S., Ren, Q., Jia, X., Li, M., Fan, T., Yin, D., Xiang, S., Guo, Y., Liu, L., Zheng, X., Qi, Y. and Zhang, Y. (2020) Plant prime editors enable precise gene editing in rice cells. *Mol Plant* 13, 667-670.
- Tang, X. and Zhang, Y. (2023) Beyond knockouts: fine-tuning regulation of gene expression in plants
 with CRISPR-Cas-based promoter editing. *New Phytol* 239, 868-874.
- Tang, X., Zheng, X., Qi, Y., Zhang, D., Cheng, Y., Tang, A., Voytas, D.F. and Zhang, Y. (2016) A
 Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. *Mol Plant* 9, 1088 1091.
- Tian, Y., Zhong, D., Li, X., Shen, R., Han, H., Dai, Y., Yao, Q., Zhang, X., Deng, Q., Cao, X., Zhu, J.K. and Lu, Y. (2022) High-throughput genome editing in rice with a virus-based surrogate system. *J. Integr. Plant Biol.*
- Walton, R.T., Christie, K.A., Whittaker, M.N. and Kleinstiver, B.P. (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. *Science* 368, 290-296.
- Weiss, T., Crisp, P.A., Rai, K.M., Song, M., Springer, N.M. and Zhang, F. (2022) Epigenetic features drastically impact CRISPR-Cas9 efficacy in plants. *Plant Physiol* 190, 1153-1164.
- Wu, Y., He, Y., Sretenovic, S., Liu, S., Cheng, Y., Han, Y., Liu, G., Bao, Y., Fang, Q., Zheng, X., Zhou, J., Qi, Y., Zhang, Y. and Zhang, T. (2022a) CRISPR-BETS: a base-editing design tool for generating stop codons. *Plant Biotechnol J* 20, 499-510.
- Wu, Y., Ren, Q., Zhong, Z., Liu, G., Han, Y., Bao, Y., Liu, L., Xiang, S., Liu, S., Tang, X., Zhou, J.,
 Zheng, X., Sretenovic, S., Zhang, T., Qi, Y. and Zhang, Y. (2022b) Genome-wide analyses of PAM relaxed Cas9 genome editors reveal substantial off-target effects by ABE8e in rice. *Plant Biotechnol J* 20, 1670-1682.
- Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G. and Liu, Y.-G. (2017) CRISPR-GE: A Convenient Software
 Toolkit for CRISPR-Based Genome Editing. *Molecular Plant* 10, 1246-1249.

- Xu, R., Li, J., Liu, X., Shan, T., Qin, R. and Wei, P. (2020a) Development of Plant Prime-Editing
 Systems for Precise Genome Editing. *Plant Commun* 1, 100043.
- Xu, W., Yang, Y., Liu, Y., Kang, G., Wang, F., Li, L., Lv, X., Zhao, S., Yuan, S., Song, J., Wu, Y.,
 Feng, F., He, X., Zhang, C., Song, W., Zhao, J. and Yang, J. (2020b) Discriminated sgRNAs-Based
 SurroGate System Greatly Enhances the Screening Efficiency of Plant Base-Edited Cells. *Mol Plant* 13, 169-180.
- Xu, W., Yang, Y., Yang, B., Krueger, C.J., Xiao, Q., Zhao, S., Zhang, L., Kang, G., Wang, F., Yi, H.,
 Ren, W., Li, L., He, X., Zhang, C., Zhang, B., Zhao, J. and Yang, J. (2022) A design optimized prime editor with expanded scope and capability in plants. *Nat. Plants* 8, 45-52.
- Zhang, Y., Malzahn, A.A., Sretenovic, S. and Qi, Y. (2019) The emerging and uncultivated potential of CRISPR technology in plant science. *Nat Plants* 5, 778-794.
- 546 Zhang, Y., Zhang, F., Li, X., Baller, J.A., Qi, Y., Starker, C.G., Bogdanove, A.J. and Voytas, D.F. (2013)
 547 Transcription activator-like effector nucleases enable efficient plant genome engineering. *Plant Physiol* 548 161, 20-27.
- Zheng, X., Yang, S., Zhang, D., Zhong, Z., Tang, X., Deng, K., Zhou, J., Qi, Y. and Zhang, Y. (2016)
 Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.
 Plant Cell Rep. 35, 1545-1554.
- Zheng, X., Zhang, S., Liang, Y., Zhang, R., Liu, L., Qin, P., Zhang, Z., Wang, Y., Zhou, J., Tang, X. and Zhang, Y. (2023) Loss-function mutants of OsCKX gene family based on CRISPR-Cas systems revealed their diversified roles in rice. *Plant Genome* 16, e20283.
- Zhong, Z., Zhang, Y., You, Q., Tang, X., Ren, Q., Liu, S., Yang, L., Wang, Y., Liu, X., Liu, B., Zhang,
 T., Zheng, X., Le, Y., Zhang, Y. and Qi, Y. (2018) Plant genome editing using FnCpf1 and LbCpf1
 nucleases at redefined and altered PAM sites. *Mol Plant* 11, 999-1002.
- Zhou, J., Deng, K., Cheng, Y., Zhong, Z., Tian, L., Tang, X., Tang, A., Zheng, X., Zhang, T., Qi, Y. and
 Zhang, Y. (2017) CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function
 and regulation in rice. *Front Plant Sci* 8, 1598.
- 561 Particle Schemen Schemen
- Zhou, J., Xin, X., He, Y., Chen, H., Li, Q., Tang, X., Zhong, Z., Deng, K., Zheng, X., Akher, S.A., Cai, G., Qi, Y. and Zhang, Y. (2019) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. *Plant Cell Rep* 38, 475-485.
- 567 Zhou, J., Zhang, R., Jia, X., Tang, X., Guo, Y., Yang, H., Zheng, X., Qian, Q., Qi, Y. and Zhang, Y.
 568 (2022) CRISPR-Cas9 mediated OsMIR168a knockout reveals its pleiotropy in rice. *Plant Biotechnol J* 569 20, 310-322.
- 570
- 571

Figure legends

Figure 1. Comparison of three CRISPR-Cas9 editing systems. (a) In a conventional CRISPR-Cas9 expression system, the plant selection marker, Cas9 and sgRNAs are driven by separate promoters. There is little correlation between edited and regenerated events. (b) In a conventional surrogate reporter system, CRISPR-Cas9 mediated genome editing events can be enriched because Cas9 expression and activity is selected during plant regeneration. However, there is only indirect correlation between edited and regenerated events. (c) In the single transcript unit-surrogate reporter (STU-SR) system, both Cas9 and sgRNA are expressed under a single Pol II promoter. Editing at the reporter gene and at the endogenous target gene is done by the same sgRNA. There is direct correlation between edited and regenerated events. Hence, STU-SR systems are stringent and powerful in enriching genome editing events.

Figure 2. Efficient gene editing in rice by STU-SR-SSA system. (a) Enrichment diagram depicting the implementation of the STU-SR-SSA system for targeted gene editing in rice. (b) Schematic illustration of the stepwise cloning strategy employed for constructing the rice STU-SR-SSA vector for targeted mutagenesis. (c) Summary of genome editing by STU and the STU-SR-SSA systems in rice T0 lines. Representative Sanger sequencing chromatograms of editing at the *HY::YG* reporter (d) and the endogenous gene loci (e) in obtained plants using the STU-SR-SSA system. (f) The phenotypes of the wild type (WT; left) and a *OsPDS* mutant (right) generated by STU-SR-SSA system. (g) The phenotypes of the WT (left) and a *OsDEP1* mutant (right) generated by STU-SR-SSA system.

Figure 3. Enrichment of gene editing events achieved regardless of T-DNA copy number. (a) Schematic illustration depicting the editing outcomes of the *HY::YG* reporter(s) in single or multiple T-DNA-integrated plant events. (b) PCR detection results of the *HY::YG* reporter in the 8 *OsPDS*-sgRNA04 T0 plants. (c) Representative Sanger sequencing chromatograms and genotypes of the *OsPDS*-sgRNA04 T0 lines with editing at the *HY::YG* reporter and the endogenous gene loci by STU-SR-SSA system.

Figure 4. Efficient base editing in rice by STU-SR system. (a) Enrichment diagram depicting the implementation of the STU-SR-BE system for base editing in rice. (b) Schematic representation of the stepwise cloning strategy employed for constructing the STU-SR-BE vectors for base editing in rice. When designing the vectors, ensure that the newly generated ATG start codon resulting from base editing aligns with the hyg^{-ATG} CDS within the same open reading frame. Otherwise, adjust the sequence between the surrogate site and the hyg^{-ATG} CDS to ensure they are in the same ORF. If the 5' end of the sgRNA lacks the corresponding sequence, such as 'ACG' or 'CAC' in CBE or 'ATA' in ABE, this can be addressed by adjusting the protospacer sequence at the PAM distal end, allowing the presence of a 1-2 bp mismatch to form the corresponding sequence. (c) Summary of base editing by STU and the STU-SR-BE systems in

rice T0 lines. (d) Examples of base edited rice T0 lines by the STU-SR-BE systems at the hygromycin site and representative endogenous gene loci. (e) Examples of base edited rice T0 lines by the STU-SR-BE systems working with SpRY variant at the hygromycin site and representative endogenous gene loci.

Figure 5. Efficient gene editing in *Brassica oleracea* by STU-SR system. (a) Schematic representation of the STU-SR-SSA vector and its implementation for achieving enrichment of gene editing events in *Brassica oleracea*. (b) Comparison of editing efficiencies at three endogenous gene loci using STU and STU-SR-SSA systems. (c) Representative images of *BoPDS* gene editing using STU and STU-SR-SSA systems. (d) Representative images of *BoBIK* gene editing using STU and STU-SR-SSA systems. (e) Representative Sanger sequencing chromatograms of T0 lines with editing at the BA::AR reporter locus. (f) Genotypes of T0 lines with gene editing by the STU-SR-SSA system in *Brassica oleracea*.s

19

Journal Prever

Journal Pre-proof

