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Prediction Model of Soil Moisture Content in Northern Cold Region Based
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Abstract There is a large temperature difference between summer and winter in northern China. Soil temperature difference
greatly influences the measurement of soil moisture by NIR (Near-Infrared). A prediction model for soil NIR spectrum and soil
moisture content under a wide range of temperature stress (—20~40 C) was introduced. Soil samples were collected in the
experimental field of Heilongjiang Bayi Agricultural University. After drying and sieving, soil samples were dampened to
moisture content ranging from 15% to 50%. Prediction model for NIR and soil moisture content under different temperature
stress was built. 69 groups of spectral data was used as training set to build model based on the full-band spectral data and five
different spectral signal preprocessing methods. BP (Back-propagation) neural network, optimized support vector machine
(SVM) algorithm and Gaussian process algorithm (GP) were used to establish the prediction model of soil near-infrared
spectrum and moisture content in northern cold areas,and verify the effect of the model. The learning rate for BP neural network
was 0. 05, the maximum training time was 5 000, and the number of hidden layer units was 20. SVM used the radial basis
function and Leave-One-Out Cross-Validation to determine the optimal penalty parameter (0. 87), which improved the accuracy
of the model prediction. Marton kernel internally was used for the GP model. GP model was evaluated by the coefficient of
determination (R*), and root mean square error (RMSE). Results show that the S G-BP neural network model has the best
performance among the BP neural network models, with R* of 0. 960 9 and RMSE of 2. 379 7. The SNV-SVM model has the
best performance among the SVM models with R* of 0. 991 1 and RMSE of 1. 081 5. The GP models, S G-GP model has the
best performance among GP models, with R* of 0. 928 and RMSE of 3. 258 1. In conclusion, the SVM model based on SNV
preprocessing has the best training performance. 35 groups of spectral data were used as a prediction set to verify the model
performance. According to the model comparison and analysis, the prediction model based on the SVM algorithm is better than
the other two algorithms, among which the S G-based SVM model has the best performance. R* and RMSE are 0. 992 1 and
0. 736 9, respectively. Combining the parameters of modeling set and prediction set, the SVM model based on S G has the best
performance in this study. This model can predict soil moisture content under a wide range of temperature stress in cold regions,
providing a theoretical foundation for the design and optimization of portable NIR soil moisture rapid measurement instruments in

the cold region.
Keywords Near-infrared spectroscopy; Cold northern region; Temperature stress; Soil moisture content; Prediction model
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