dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到258条 ,权限内显示50条;

and chloroplast DNA markers
负责人:
关键词:
genetic structures;Betula platyphylla and B. ermanii;phylogeographic
DOI:
doi:10.5061/dryad.230d176
摘要:
, and results are inconsistent for species with different niches or distribution areas. We employed multiple chloroplast and nuclear markers to investigate
Data from: Species-specific calcification response of Caribbean corals after two-year transplantation to low aragonite saturation submarine springs
负责人:
关键词:
Porites porites;corals;calcification;Porites astreoides;ocean acidification;Siderastrea siderea
DOI:
doi:10.5061/dryad.3pm80bp
摘要:
s of Symbiodiniaceae, chlorophyll a, and protein at the low ?arag site. Nubbins of P. astreoides had 20% lower survival and higher chlorophyll a concentration at the low
Data from: Phylogeography of the Neotropical epiphytic orchid, Brassavola nodosa: evidence for a secondary contact zone in northwestern Costa Rica
负责人:
关键词:
population genetics;phylogeography;Brassavola nodosa;Holocene;Pleistocene and Holocene;phylogeography
DOI:
doi:10.5061/dryad.hc218qk
摘要:
chloroplast sequence regions. We estimated genetic diversity and structure, relative importance of pollen and seed dispersal, and divergence time to understand
Data from: Patterns in evolutionary origins of heme, chlorophyll a and isopentenyl diphosphate biosynthetic pathways suggest non-ph
负责人:
关键词:
DOI:
doi:10.5061/dryad.591sm73
摘要:
metabolic pathways synthesizing chlorophyll a (Chl a), heme and isoprene. The origins of the individual proteins of our interest were investigated, and assessed
Data from: Intraspecific haplotype diversity in Cherleria sedoides L. (Caryophyllaceae) is best explained by chloroplast capture fro
负责人:
关键词:
range expansion;Cherleria sedoides;Minuartia;cpDNA;Hybridisation;Holocene;Caryophyllaceae;Pleistocene
DOI:
doi:10.5061/dryad.sm95d
摘要:
chloroplast haplotype groups, one widespread (WH) and one present only in some populations in the Alps (AH). We investigated whether this haplotype diversity
Data from: Phylogeny and photosynthesis of the grass tribe Paniceae
负责人:
关键词:
chloroplast C4 NAD-ME NADP-ME PCK photosynthesis
DOI:
doi:10.5061/dryad.92137
摘要:
(78 chloroplast, 22 mitochondrial, 2 nrDNA). Ancestral state reconstruction analyses were also performed within the Paniceae using both the traditional
Data from: A molecular phylogeny of Staphyleaceae: implications for generic delimitation and classical biogeographic disjunctions in the family
负责人:
关键词:
Euscaphis;Staphylea;Turpinia;Staphyleaceae;Dalrympelea;phylogeny
DOI:
doi:10.5061/dryad.q4qb1
摘要:
Vent. These genera are clearly supported by morphology, but a recent classification based on four chloroplast genes and nuclear ITS treats Staphy
calophylla (Myrtaceae) in south-western Australia
负责人:
关键词:
gene flow;range expansion;Quaternary;Quaternary to Holocene;Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae);persistence;climate oscillations;Evolution;phylogeography
DOI:
doi:10.5061/dryad.64n81
摘要:
ng genetic analyses of four slowly evolving non-coding chloroplast sequences and 16 nuclear microsatellites in the tree Corymbia calophylla fro
Data from: Cell size, photosynthesis and the package effect: an artificial selection approach
负责人:
关键词:
Experimental evolution;Primary production;evolutionary size-shift;oxygen evolution;allometric size-scaling;Geometric biology;Dunaliella tertiolecta;Metabolism;Artificial selection
DOI:
doi:10.5061/dryad.642jt90
摘要:
photosynthetic parameters. Evolving larger sizes (> 1500% difference in volume) resulted in reduced oxygen production per chlorophyll molecule – as predicted by the package
Data from: Early photosynthetic eukaryotes inhabited low-salinity habitats
负责人:
关键词:
Cyanothece sp. PCC8801;Gloeomargarita lithophora;Volvox carteri nagariensis UTE2908;Fistulifera sp. JPCC DA0580;Pseudendoclonium akinetum;Pyramimonas parkeae;Precambrian;Anabaena cylindrica PCC7122;Photosynthetic eukaryotes;Cyanophora paradoxa;Prochlorococcus marinus str. MIT9515;Parachlorella kessleri;Synechococcus sp. WH8016;Synechococcus sp. PCC7002;Cyanidium caldarium;Cycas taitungensis;Pedinomonas minor;Chlamydomonas reinhardtii;Psilotum nudum;relaxed molecular clock.;Gloeobacter violaceus PCC7421;Prochloron didemni P2 Fiji;Anthoceros formosae;Mesoproterozoic;Thermosynechococcus elongatus BP1;Welwitschia mirabilis;Prasinoderma colonial;Pseudanabaena biceps PCC7429;Cyanothece sp. PCC7425;Angiopteris evecta;Cyanothece sp. PCC7424;Chlorokybus atmophyticus;Synechococcus sp. JA-3-3Ab;Coccomyxa sp. C169;Floydiella terrestris;Schizomeris leibleinii;Richelia intracellularis HH01;Microcystis aeruginosa NIES843 Micromonas sp. RCC299;Nodularia spumigena CCY9414;Porphyra purpurea;Adiantum capillus veneris;Buus microphylla;Calycanthus floridus;Nymphaea alba;Phaeodactylum tricornutum;Spinacia oleracea;Nodosilinea nodulosa PCC7104;Odontella sinensis;Chloroplast;Physcomitrella patens subsp patens;Great Oxidation Event;Aneura mirabilis;Cyanobacteria;Leptolyngbya sp. PCC7375;Synedra acus;Prochlorococcus marinus str. MIT9211;Cyanobium sp. PCC7001;Leptolyngbya sp. PCC7376;Verdigellas peltata;Bryopsis hypnoides;Gracilaria tenuistipitata;Synechococcus sp. RCC307;Ptilidium pulcherrimum;Prasinococcus sp. CCMP1194;Dunaliella salina;Nostoc azollae 0708;Ranunculus macranthus;Microcoleus vaginatus FGP2;Scenedesmus obliques;Synechococcus sp. PCC7335;Chaetosphaeridium globosum;Oscillatoria sp. PCC6506;Pseudanabaena sp. PCC7367;Raphidiopsis brookii D9;Richelia intracellularis HM01;Trichodesmium erythraeum IMS101;Prochloron didemni P3 Solomon;primary endosymbiotic event;Klebsormidium flaccidum;Acaryochloris marina MBIC11017;Arthrospira sp. PCC8005;Marchantia polymorpha;Staurastrum punctulatum;Coffea arabica;Porphyra yezoensis;Crocosphaera watsonii WH0003;Stigeoclonium helveticum;Pleurocapsa sp. PCC7327;Proterozoic;Gnetum parvifolium;Thalassiosira oceanica CCMP1005;Chara vulgaris;Leptosira terrestris;Cyanidioschyzon merolae strain 10D;Synechococcus sp. CB0101;Paulinella chromatophora;Nostoc punctiforme PCC73102;Pycnococcus provasolii;Illicium oligandrum;Prochlorococcus marinus str. AS9601;Nostoc sp. PCC7120;Fischerella sp. JSC11;Synechocystis sp. PCC6803;Cyanobium gracile PCC6307;Zygnema circumcarinatum;Microcoleus chthonoplastes PCC7420;Neoproterozoic;Pinus contorta;Calothrix sp. PCC6303;Ephedra equisetina;Synechococcus elongatus PCC6301;Amborella trichopoda;Cryptomeria japonica;Monomasti sp. OKE1;Pseudanabaena sp. PCC6802;phylogenomics;Lyngbya sp. PCC8106;Pre-Cambrian;Synechococcus sp. JA-2-3B'a(2-13);Oltmannsiellopsis viridis Oocystis solitaria SAG83 80;Syntrichia ruralis;Nephroselmis olivacea;Synechococcus sp. CC9605;Mesostigma viride;Ostreococcus tauri;Lyngbya majuscula 3L;Oedogonium cardiacum;Prochlorococcus marinus str. MIT9303;Cyanothece sp. CCY0110
DOI:
doi:10.5061/dryad.421p2
摘要:
event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充