dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到38条 ,权限内显示50条;

Data from: Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients
负责人:
关键词:
abiotic filtering;biodiversity;global analysis;latitude;limiting similarity;niche-based processes
DOI:
doi:10.5061/dryad.tqjq2bvtc
摘要:
functional and phylogenetic dispersion of birds after controlling for effects of species richness. Environmental filtering, thus, may act different
Data from: Machine learning-based differential network analysis: a study of stress-responsive transcriptomes in Arabidopsis thaliana
负责人:
关键词:
Systems biology;Arabidopsis thaliana;abiotic\/environmental stress;differential network;bioinformatics;transcriptome analysis;gene coexpression network;Random Forest;Machine Learning
DOI:
doi:10.5061/dryad.41b9g
摘要:
in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes
Data from : Vacant yet invasible niches in forest community assembly
负责人:
关键词:
DOI:
doi:10.5061/dryad.vx0k6djp4
摘要:
s and communities), and we tested for the effect of abiotic (environmental filtering) and biotic (competition) processes on the functional hypervolumes al
Data from: Shifts and linkages of functional diversity between above- and below-ground compartments along a flooding gradient
负责人:
关键词:
plant communities;null model;Functional traits;environmental gradient;trait-convergence;Collembola;biotic and abiotic filters;trait-divergence
DOI:
doi:10.5061/dryad.kk744
摘要:
species richness, community traits and assessed whether traits of both compartments converged at high flooding intensity (abiotic filtering) and diver
Data from: Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe
负责人:
关键词:
DOI:
doi:10.5061/dryad.8gg68
摘要:
Abiotic conditions, biotic factors, and disturbances can act as filters that control community structure and composition. Under
Data from: Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands
负责人:
关键词:
functional diversity;stress;spatial extent;intraspecific variability;competition;facilitation;spatial grain;grassland
DOI:
doi:10.5061/dryad.8b3h0
摘要:
. Here, we test for changes in the importance of abiotic filtering and biotic interactions along a stress gradient by explicitly accounti
Data from: Phylogenetic diversity correlated with aboveground biomass production during forest succession: evidence from tropic
负责人:
关键词:
Succession;ecosystem function;plant population and community dynamics;community assembly;Tropical Forest;Abiotic and biotic factors;biodiversity;phylogenetic diversity;aboveground biomass
DOI:
doi:10.5061/dryad.6ns42cq
摘要:
in the young secondary forest (< 15 years old) but not significantly associated with AGB in older seres. 5. Synthesis: Our results support the hypothesis that abiotic filtering
Data from: Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages
负责人:
关键词:
Terminalia bellirica;Machilus kurzii;Sarcochlamys pulcherrima;Eurya acuminata;Cyathea spinulosa;Melastoma malabathricum;Castanopsis indica;Walsura robusta;Erythrina stricta;trees;Tsuga dumosa;Elatostema platyphyllum;Toona sureni var. sureni;Altingia excelsa;Macaranga denticulata;filtering;Azadirachta indica;Community Ecology;Lyonia ovalifolia;Angiopteris evecta;Exbucklandia populnea;Grewia optiva;Zanthoxylum armatum;Daphne papyracea;Elaeagnus parvifolia;Bhesa robusta;Aglaia spectabilis;Dendrocalamus hamiltonii;Spondias pinnata;Dysoxylum binectariferum;Quercus leucotrichophora;Toona ciliata;Garuga pinnata;Pyrus communis;Albizia lucidior;Bambusa tulda;Breonia chinensis;Phoebe cooperiana;Gmelina arborea;Acacia sp.;Prunus cerasoides;Syzygium cumini;Terminalia myriocarpa;Dipterocarpus retusus;Gymnocladus assamicus;Tectona grandis;Juglans regia;Alstonia scholaris;Juniperus sp.;Callicarpa arborea;Michelia champaca;Baccaurea ramiflora;Ficus auriculata;Rhododendron barbatum;Casearia vareca;Duabanga grandiflora;Senna siamea;Hovenia dulcis var. dulcis;Gleditsia assamica;Aralia sp;Morus laevigata;Ostodes paniculata;Ricinus communis;Artocarpus heterophyllus;Pinus roxburghii;Berberis leschenaultii;Syzygium jambos;Lagerstroemia speciosa;Phlogacanthus thyrsiflorus;Garcinia cowa;Illicium griffithii;Meyna laxiflora;Tetrameles nudiflora;Bombax ceiba;Rhododendron maddenii;Bambusa balcooa;Acer campbellii;Ficus glaberrima;Smilax sp.;Rhododendron wallichii;Bauhinia ungulata;beta diversity;Litsea cubeba;Citrus maxima;phylogenetics;Kydia calycina;Coriaria nepalensis;Caryota urens;Schima khasiana;Chukrasia tabularis;Cyathea sp;Leea macrophylla;Schima wallichii;Ficus hispida;Psidium guajava;Oroxylum indicum;Ficus benjamina var. nuda;Wendlandia glabrata;Brassaiopsis mitis;Shorea robusta;Trewia nudiflora;Micromelum integerrimum;Hevea brasiliensis;Calamus sp;Ficus cyrtophylla;Pterospermum acerifolium;Stereospermum chelonoides;Vernonia arborea;Mesua ferrea;Moringa oleifera;Dillenia indica;Eucalyptus sp.;Glochidion heymeanum;Lindera sp.;Styrax sp.;Albizia procera;Maesa indica;Quercus glauca;Carallia brachiata;Magnolia pealiana;Schefflera venulosa;Acer cappadocicum;Eurya japonica;Brucea javanica;Rhododendron thomsonii;Alnus nepalensis;Boehmeria nivea;Rhododendron lanatum;Abroma augusta;Ailanthus integrifolia;Callicarpa macrophylla;Litsea monopetala;Garcinia pedunculata;Bridelia retusa;Zizyphus mauritiana;Gaultheria sp.;Rhododendron fulgens;Hydrangea sp.;Debregeasia saeneb;Viburnum cylindricum;Mallotus philippensis;Toxicodendron griffithii;Phyllanthus emblica;Saurauia nepaulensis;Boehmeria glomerulifera;Pieris formosa;Pinus kesiya;Sterculia villosa;Casuarina sp;Cordia grandis;Boehmeria macrophylla;Cupressus torulosa;Magnolia hodgsonii;Rhododendron arboreum;Ficus hirta;Merrilliopanax alpinus;Pinus wallichiana;Docynia indica;Rhododendron cinnabarinum;species richness;Bischofia javanica;Camellia sinensis;Trevesia palmata;Artocarpus chama;Myrica esculenta;Pandanus furcatus;Melia azedarach;Ficus racemosa;Acer caesium;Cassia fistula;Livistona jenkinsiana;Boehmeria rugulosa;Actinodaphne obovata;Quercus baloot;Pterospermum lanceifolium;Boehmeria platyphylla;Canarium strictum;Beilschmiedia fagifolia;Abies alba;Mangifera indica;Cornus capitata;Dalbergia sissoo;Shorea assamica;Rhododendron falconeri;Loranthus sp;Trema orientalis;Viburnum colebrookeanum;Alangium chinense;Elaeocarpus floribundus;Sambucus adnata;Ardisia macrocarpa;Heteropanax fragrans;Citrus reticulata;Engelhardia spicata;Clerodendrum infortunatum;Ficus semicordata;Persea odoratissima;Rhododendron grande;Albizia lebbeck;Podocarpus neriifolius;elevational gradient;Cinnamomum bejolghota;Rhus chinensis;Aquilaria malaccensis;Litsea salicifolia;Pinus merkusii;Terminalia chebula;Musa sp.
DOI:
doi:10.5061/dryad.1tr7p0k
摘要:
ns of beta diversity (both taxonomic and phylogenetic) strongly suggest lineage filtering along the elevational gradient. Our results may be explained if filtering

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充