dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到17条 ,权限内显示50条;

Data from: A novel algorithm to enhance P300 in single trials: application to lie detection using F-score and SVM
负责人:
关键词:
EEG;P300;ICA;EEG signal processing;lie detection;biomedical engineer;F-score_SVM
DOI:
doi:10.5061/dryad.2qc64
摘要:
nce comparison. The optimal parameter values in the SDA and the classifiers were tuned using a grid-searching training procedure with cross-validation. The support vector machine
Data from: Development of machine learning models for diagnosis of glaucoma
负责人:
关键词:
cornea thickness;RNFL;glaucoma;ocular pressure
DOI:
doi:10.5061/dryad.q6ft5
摘要:
on model, we considered four machine learning algorithms: C5.0, random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly compo
Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli
负责人:
University Of Edinburgh;;University Of Edinburgh
关键词:
Biological Sciences::Medical and Veterinary Microbiology
DOI:
doi:10.7488/ds/2102
摘要:
Support Vector Machine (SVM) classifiers were built based on whole genome sequence content. Analysis of over 1000 S. enterica genomes allowed the correct prediction (67% - 90
Data from: Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-si
负责人:
关键词:
Radiomics;comparison;texture;classifiers;Machine Learning;medical imaging
DOI:
doi:10.5061/dryad.026cj63
摘要:
-weighted (T2w) MRI. Methods: 12 different supervised classifier schemes: Quadratic Discriminant Analysis (QDA), Support Vector Machines
Data from: Pain intensity recognition rates via biopotential feature patterns with support vector machines
负责人:
关键词:
Holy Grail;BioVid Heat Pain Database;Biopotential Feature List
DOI:
doi:10.5061/dryad.2b09s
摘要:
arity, variability, and similarity. Results: We achieved classification rates of 90.94% for baseline vs. pain tolerance threshold and 79.29% for baseline
Land cover change maps for Mato Grosso State in Brazil: 2001-2016, links to files, supplement to: Picoli, Michelle; Camara, Gilberto; Sanches, Ieda
负责人:
关键词:
File content File name File format File size Uniform resource locator\/link to file Multiple investigations
DOI:
doi:10.1594/pangaea.881291
摘要:
for a support vector machine classifier. The classes include natural and human-transformed land areas, discriminating among different agricultural crops in state of Mato Gross
Data from: Mathematical modeling for the prediction of cerebral white matter lesions based on clinical examination data
负责人:
关键词:
2016-2017;cerebral white matter lesions;clinical examination data;mathematical modeling;Homo Sapiens
DOI:
doi:10.5061/dryad.73bh2q8
摘要:
s, logistic discrimination, Naive Bayes classifier, support vector machine, and random forest were investigated and evaluated by ten-fold cross-validation, usi

首页上一页12下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充