dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到5条 ,权限内显示50条;

Data from: Symmetry breaking and inter-clonal behavioural variability in slime molds
负责人:
关键词:
Physarum polycephalum;decision making;Phenotypic Plasticity;slime molds
DOI:
doi:10.5061/dryad.t62h737
摘要:
asymmetry. Here, we study this process of symmetry breaking in the acellular slime mold Physarum polycephalum. In the experiments slime molds could grow
Data from: Habituation in non-neural organisms: evidence from slime moulds
负责人:
关键词:
Habituation;Physarum polycephalum;learning;slime mould;chemotaxis
DOI:
doi:10.5061/dryad.51j89
摘要:
lled organisms. Here we demonstrate habituation, an unmistakable form of learning, in the non-neural organism Physarum polycephalum. In our experiment, usi
Data from: Phenotypic variability in unicellular organisms: from calcium signaling to social behavior
负责人:
关键词:
calcium;social behavior;Physarum polycephalum;behavioral phenotype;slime mold;variability
DOI:
doi:10.5061/dryad.s0qc1
摘要:
now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined
Data from: Direct transfer of learned behaviour via cell fusion in non-neural organisms
负责人:
关键词:
Physarum polycephalum;cell fusion;transfer of learned behaviour;slime molds;Habituation
DOI:
doi:10.5061/dryad.p3720
摘要:
Physarum polycephalum, in which cell–cell fusion is extremely common. Slime moulds are capable of habituation, a simple form of learning, when repeatedly expo
Data from: The effects of model choice and mitigating bias on the ribosomal tree of life
负责人:
关键词:
Trichoplax adhaerens;Cyanophora paradoxa;Desulfurispirillum indicum;Chlamydomonas reinhardtii;Bigelowiella natans;Cenarchaeum symbiosum;Cryptosporidium muris;Zymomonas mobilis;Nitrosoarchaeum limnia;Lactobacillus fermentum;Aspergillus flavus;Oscillibacter valericigenes;Arachnula sp;Archaeoglobus fulgidus;single-matrix model;Thermoplasma acidophilum;Paenibacillus sp;Perkinsus marinus;Corynebacterium pseudotuberculosis;Natromonas pharaonis;Staphylothermus marinus;two-domain tree;Diplonema sp;Prevotella denticola;Cyanothece sp;Ribosomal tree of life;Candida albicans;Anaerolinea thermophila;Methanocaldococcus jannaschii;Phaeodactylum tricornutum;Methylacidiphilum infernorum;Methanosarcina mazei;Dictyostelium discoideum;Chlorobium limicola;Thermotoga maritima;Methanosphaera stadtmanae;Babesia bovis;Thermodesulfatator indicus;Thermovibrio ammonificans;Flamella sp;Korarchaeum cryptofilum;Syntrophus aciditrophicus;Methanobrevibacter smithii;Deinococcus deserti;Gemmatimonas aurantiaca;Dyadobacter fermentans;Methanococcus aeolicus;Tribonema sp;Toxoplasma gondii;Acetobacter pasteurianus;Methanococcoides burtonii;Leishmania major;Thalassiosira pseudonana;Aeropyrum pernix;Nitrosomonas europaea;mixture model;Thermococcus kodakarensis;Arabidopsis thaliana;Apis mellifera;Nitrosopumilis sp;Halobacterium salinarum;Acidilobus saccharovorans;Pyrobaculum aerophilium;Fibrobacter succinogenes;Acanthamoeba sp;Idiomarina loihiensis;Ciona intestinalis;Meiothermus silvanus;Thermocrinis albus;Neisseria meningitidis;Spirochaeta coccoides;Methanopyrus kandleri;Xylella fastidiosa;Bodo sp;Ignicoccus hospitalis;Physarum polycephalum;Desulfurococcus mucosus;Danio rerio;Compositional heterogeneity;Treponema brennaborense;Sulfolobus solfataricus;Hypterthermus butylicus;Picrophilus torridus;Plasmodium vivax;Denitrovibrio acetiphilus;Haloarcula marismortui;three-domain tree;Metallosphaera sedula;Phytophthora infestans;Planctomyces brasiliensis;Thermovirga lienii;Trypanosoma brucei;Dictyoglomus thermophilum;Cryptobacterium curtum;Trimastix pyriformis;Cryptococcus gattii;Dehalococcoides ethenogenes;Pyrolobus fumarii;Guillardia theta;Methanoculleus marisingri;Thermus scotoductus;Syntrophothermus lipocalidus;Coraliomargarita akajimensis;Desulfobacca acetoxidans;Nitrosospira multiformis;Heterosigma sp;Prochlorococcus marinus;Fusobacterium nucleatum;Rhodopirellula baltica;Emiliana huxleyi;Nanoarchaeum equitans;Pyrococcus horikoshii;Ostreococcus tauri;Euglena sp
DOI:
doi:10.5061/dryad.7785h
摘要:
ent signal necessary for reconstructing a tree suitable as a backbone for life’s reticulate history. Here, we generate a ribosomal tree of life from a robust

首页上一页1下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充