dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到9条 ,权限内显示50条;

Data from: Comparison of 454 pyrosequencing methods for characterizing the major histocompatibility complex of nonmodel species and the advantages of ultra deep coverage
负责人:
关键词:
454 sequencing;wolverine;Gulo gulo;multi-locus genes;pyrosequencing;Major histocompatibility complex;Holocene
DOI:
doi:10.5061/dryad.s5b40
摘要:
of MHC DRB exon 2 in wolverines (Gulo gulo) and further compared the results with those from cloning and Sanger sequencing. We found 10 putative DRB
Data from: Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus)
负责人:
关键词:
step selection;Boreal forest;oil extraction;roads;industry;traffic volume
DOI:
doi:10.5061/dryad.44pp0
摘要:
. We evaluated our predictions using an integrated step-selection analysis of wolverine (Gulo gulo luscus) space use in relation to spatially and temporally
Data from: Using partial aggregation in Spatial Capture Recapture
负责人:
关键词:
Gulo gulo;wolverines
DOI:
doi:10.5061/dryad.pd612qp
摘要:
(Gulo gulo) in Norway. 3. Spatial aggregation of detections, while reducing computation time, does indeed incur costs in terms of reduced precision
Data from: The fluctuating world of a tundra predator guild: bottom-up constraints overrule top-down species interactions in winter
负责人:
关键词:
Gulo gulo;Lemmus lemmus;Vulpes lagopus;Lagopus lagopus;Lagopus muta;Arctic ecosystems;seasonality;bottom-up versus top-down effect;Vulpes vulpes
DOI:
doi:10.5061/dryad.rk64m4c
摘要:
Vulpes vulpes, wolverine Gulo gulo) and small prey (ptarmigan, Lagopus spp). The a-priori top-down hypothesis was then tested throug
Data from: Failure to coordinate management in transboundary populations hinders the achievement of national management goals: the case of wolverines in Scandinavia
负责人:
关键词:
vec-permutation matrix model;spatial harvest;Gulo gulo;compensatory immigration;density-dependent dispersal;source-sink dynamic;transboundary species;Transboundary management;Holocene;policy
DOI:
doi:10.5061/dryad.rd300kf
摘要:
1. Large carnivores are expanding in Europe, and their return is associated with conflicts that often result in policies to regulate their population size through culling. Being wide-ranging species, their populations are often distributed across several jurisdictions, which may vary in the extent to which they use lethal control. This creates the conditions for the establishment of source-sink dynamics across borders, which may frustrate the ability of countries to reach their respective management objectives. 2. To explore the consequences of this issue, we constructed a vec-permutation projection model, applied to the case of wolverines in south-central Scandinavia, shared between Norway (where they are culled) and Sweden (where they are protected). We evaluated the effect of compensatory immigration on wolverine population growth rates, and if the effect was influenced by the distance to the national border. We assessed to what extent compensatory immigration had an influence on the number of removals needed to keep the population at a given growth rate. 3. In Norway the model estimated a stable trend, whereas in Sweden it produced a 10% annual increase. The effect of compensatory immigration corresponded to a 0.02 reduction in population growth rate in Sweden and to a similar increase in Norway. This effect was stronger closer to the Norwegian-Swedish border, but weak when moving away from it. An average of 33 wolverines were shot per year in the Norwegian part of the study area. If no compensatory immigration from Sweden had occurred, 28 wolverines shot per year would have been sufficient to achieve the same goal. About 15.5% of all the individuals harvested in Norway between 2005-2012 were compensated for by immigrants, causing a decrease in population growth rate in Sweden. 4. Synthesis and applications. When a population is transboundary, the consequences of management decisions are also transboundary, even though the political bodies in charge of those decisions, the stakeholders who influence them, and the taxpayers who finance them are not. It is important that managers and citizens be informed that a difference in management goals can reduce the efficiency, and increase the costs, of wildlife management.
Data from: A local evaluation of the individual state-space to scale up Bayesian spatial capture recapture
负责人:
Milleret, Cyril
关键词:
SCR abundance local evaluation of state space
DOI:
doi:10.5061/dryad.42m96c8
摘要:
. We demonstrate the power of this new approach by mapping the density of an elusive large carnivore – the wolverine (Gulo gulo) – with an unprecedented resolution
Data from: Fatal attraction? Intraguild facilitation and suppression among predators
负责人:
关键词:
Carnivores;competition;Lynx canadensis;Ecology: community;Gulo gulo;Martes americanus;Community: structure;Interactions: trophic;Canis latrans;Canis lupus;Vulpes vulpes
DOI:
doi:10.5061/dryad.tj590
摘要:
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi-experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of non-apex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of non-apex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of non-apex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Data from: Estimating occupancy using spatially and temporally replicated snow surveys
负责人:
关键词:
lynx multi-scale occupancy snow survey spatial replication temporal replication wolverine
DOI:
doi:10.5061/dryad.v4p20
摘要:
and temporally replicated data and applied them to snow-tracking surveys of six species including wolverine Gulo gulo and Canadian lynx Lynx
Data from: Environmental correlates of the Late Quaternary regional extinctions of large and small Palaearctic mammals
负责人:
关键词:
Vormela peregusna;Sorex araneus sl;Eptesicus nilssonii;Sicista kazbegica;Dicrostonyx torquatus sl;Muscardinus avellanarius;Sorex thaleri;Rhinolophus mehelyi;Apodemus agrarius;Talpa stankovici;Murina hilgendorfi;Spalax microphtalmus;Spermophilus citelloides;Crocidura suaveolens sl;Microtus liechtensteini;Rhinolophus bocharicus;Ellobius talpinus;Marmota baibacina;Cricetulus migratorius;Ochotona pallasi;Marmota caudata;Cricetus cricetus;Ochotona macrotis;Bos grunniens sl;Sorex satunini;Myotis nattereri;Paraechinus hypomelas;Microtus guentheri;Ovibos moschatus sl;Sicista caucasica;Spermophilus relictus;Allactaga elater;Lagurus lagurus;Nyctalus lasiopterus;Ursus thibetanus;Bos primigenius;Lemmus sibiricus;Hemiechinus auritus;Spermophilus xanthoprymnus;Holocene;Sorex alpinus;Allocricetulus eversmanni;Selevinia betpakdalaensis;Ochotona alpina;Talpa caeca;Capreolus capreolus;Martes zibellina;extinction;Nyctalus leisleri;Pteromys volans;Spermophilus erythrogenys;Apodemus epimelas;Ochotona pusilla;Saiga tatarica sl;Crocidura zorzii;Paradipus ctenodactylus;Salpingotus crassicauda;Microtus lusitanicus;Vulpes vulpes;Ochotona rutila;Allactaga vinogradovi;Stylodipus andrewsi;Calomyscus urartensis;Microtus ilaeus;Caracal caracal;Alticola barakshin;Spalax leucodon sl;Spermophilus suslicus;Pygeretmus platyurus;Lasiopodomys mandarinus;Sorex isodon;Pipistrellus kuhlii;Mustela altaica;Rupicapra pyrenaica;Coelodonta antiquitatis;Salpingotus pallidus;Ochotona hyperborea;Myotis ikonnikovi;Microtus subterraneus;Hypsugo savii;Microtus socialis;Sciurus anomalus;Spermophilopsis leptodactylus;Ursus spelaeus;Uncia uncia;Panthera leo sl;Sicista armenica;Microtus maximowiczii;Allocricetulus curtatus;Eolagurus luteus;Rhombomys opimus;Arvicola sapidus;Miniopterus schreibersii;Microtus felteni;Alticola macrotis;Barbastella schadleri;Hystrix cristata;Crocuta spelaea;Felis manul;Apodemus uralensis;Talpa europaea;Myotis schaubi;Spermophilus dauricus;Alticola lemminus;Chionomys nivalis;Myodes rutilus;Apodemus hyrcanicus;Equus hydruntinus;Dipus sagitta;Rhinolophus ferrumequinum;Spermophilus undulatus;Canis aureus;Mus musculus sl;Ovis orientalis;Capra aegagrus;Spermophilus severskensis;Lasiopodomys brandtii;Allactaga williamsi;Mammuthus primigenius;Vespertilio murinus;Spermophilus fulvus;Microtus juldaschi;Canis lupus;Allactaga severtzovi;Crocidura serezkyensis;Microtus arvalis;Mustela eversmanii;Lemmus lemmus;Alticola argentatus;Felis margarita;Apodemus ponticus;Spalax arenarius;Microtus gerbei;Spermophilus musicus;Alticola semicanus;Cardiocranius paradoxus;habitat loss;Oryctolagus cuniculus;Ovis ammon;Pipistrellus nathusii;mammal;Palaearctic;Neomys fodiens;Phodopus campbelli;Desmana moschata;Salpingotus heptneri;Microtus multiplex;Sorex volnuchini;Myotis myotis sl;Tadarida teniotis;Late Pleistocene;Talpa caucasica;Sicista tianshanica;Myotis dasycneme;Rhinolophus blasii;Macaca sylvanus;Megaloceros giganteus;Mammalia;Sorex raddei;Microtus duodecimcostatus;Myomimus roachi;Lepus capensis sl;Panthera pardus;Procapra gutturosa;Mesechinus dauuricus;Dama mesopotamica;Pygeretmus pumilio;Vulpes corsac;Microtus bavaricus;Sorex minutissimus;Mustela erminea;Marmota sibirica;Spermophilus major;Spalax zemni;Lynx lynx;Microtus schidlovskii;Mustela sibirica;Marmota marmota;Martes foina;Marmota paleocaucasica;Galemys pyrenaicus;Capra caucasica;Sorex asper;Dinaromys bogdanovi;Apodemus mystacinus;Crocidura gmelini;Gazella subgutturosa;Apodemus sylvaticus;Alces alces sl;Myodes centralis;Myospalax myospalax;Capra sibirica;Allactaga major;Ochotona dauurica;Equus hemionus;Mustela nivalis;Microtus mongolicus;Moschus moschiferus;Marmota camtschatica;Otonycteris hemprichii;Talpa altaica;Alticola tuvinicus;Meriones persicus;Cuon alpinus;Rangifer tarandus;Alticola strelzovi;Eptesicus serotinus;Sus scrofa;Mesocricetus brandti;Rhinolophus hipposideros;Barbastella barbastellus sl;Capra ibex;Myotis frater;Hyaena hyaena;Myotis emarginatus;Prometheomys schaposchnikowi;Microtus middendorffii;Myotis bechsteinii;Apodemus flavicollis;Talpa levantis;Microtus limnophilus;Capra pyrenaica;Meriones libycus;Meles meles sl;Rhinolophus euryale;Sicista betulina sl;Pygeretmus shitkovi;Felis chaus;Apodemus witherbyi;Spermophilus superciliosus;Sorex minutus;Apodemus alpicola;Dama dama;Allactaga euphratica;Sorex averini;Stylodipus sungorus;Microtus fortis;Myotis brandtii;Lemmus amurensis;Apodemus peninsulae;Lepus timidus;Crocidura leucodon;Marmota menzbieri;Eolagurus przewalskii;Dryomys nitedula;Microtus cabrerae sl;Spermophilus pallidicauda;Mus spretus;Ochotona turuchanensis;Mus spicilegus;Cricetulus longicaudus;Ovis nivicola;Marmota bobak;Castor fiber;Nyctalus noctula;Meriones dahli;Equus ferus sl;Phodopus sungorus;Acinonyx jubatus;Sorex caecutiens;Pleistocene;Microtus thomasi;Meriones unguiculatus;Felis silvestris sl;Vulpes lagopus;fauna;Nyctereutes procyonoides;Camelus knoblochi;Spermophilus citellus;Meriones tamariscinus;Lutra lutra;Crocidura armenica;Pipistrellus pipistrellus sl;Sorex granarius;Eremodipus lichtensteini;mammoth steppe;Arvicola amphibius;Camelus ferus;Jaculus blanfordi;Sciurus vulgaris;Ellobius tancrei;Diplomesodon pulchellum;climate change;Myotis mystacinus sl;Neomys teres;Suncus etruscus;Ursus deningeri;Micromys minutus;Myospalax aspalax;Microtus majori;Ellobius lutescens;Microtus oeconomus;Bison bonasus;Sicista kluchorica;Sorex tundrensis sl;Lynx pardinus;Ratus pyctoris;Hystrix indica;Talpa romana;Capreolus pygargus;Cervus elaphus sl;Microtus agrestis;Microtus levis;Microtus schelkovnikovi;Allactaga bullata;Panthera tigris;Gulo gulo;Microtus savii sl;Stylodipus telum;Mesocricetus auratus;Eptesicus gobiensis;Bison priscus;Eptesicus bottae;Myodes rufocanus;Myodes glareolus;Eliomys quercinus;Erinaceus europaeus sl;Neomys anomalus;Microtus tatricus;Lepus tanaiticus;Ursus maritimus;Plecotus auritus sl;Chionomys roberti;Martes martes;Bubalus cf. arnee;Spalax graecus;Mus macedonicus;Meriones tristami;Meriones vinogradovi;Spalax giganteus;Meriones meridianus;Mustela putorius;Crocidura sibirica;Sorex daphaenodon;Mesocricetus raddei;Talpa occidentalis;Myopus schisticolor;Phodopus roborovskii;Spalax uralensis;Spermophilus pygmaeus;Microtus daghestanicus;Mesocricetus newtoni;Spermophilus parryii;Mustela lutreola;Myotis capaccinii;Tamias sibiricus;Allactaga sibirica;Microtus gregalis;Ursus arctos;Myotis daubentonii sl;Glis glis;Sorex roboratus;Vespertilio sinensis;Chionomys gud;Sicista subtilis sl;rupicapra rupicapra;Cricetulus barabensis
DOI:
doi:10.5061/dryad.62p1q
摘要:
Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs. human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in Southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low-extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high-extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter.

首页上一页1下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充