dataService

您的位置: 首页 > 数据服务 > 数据列表页

筛选

共检索到51条 ,权限内显示50条;

Occurrence data on Beauvericin and Enniatins in food
负责人:
关键词:
beauvericin enniatins exposure food occurrence risk assessment sampling toxicity http:\/\/id.agrisemantics.org\/gacs\/C1934 http:\/\/id.agrisemantics.org\/gacs\/C16586
DOI:
doi:10.5281/zenodo.571179
摘要:
Beauvericin and enniatins are mycotoxins produced by various Fusarium species that invade and grow on crops, and may produce them under
Data from: New record of Egertonia (Elopiformes, Phyllodontidae) from the Late Cretaceous of South India
负责人:
关键词:
Egertonia;palaeobiogeography;Phyllodontidae;Egertonia isodonta;Teleostei;Late Cretaceous
DOI:
doi:10.5061/dryad.r4691
摘要:
We report a new occurrence of the phyllodontid teleost fish Egertonia from the Late Cretaceous Kallamedu Formation of the Cauvery Basin, South India
Data from: Experimental evolution to increase the efficacy of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes: effects
负责人:
关键词:
Beauveria bassiana;Experimental evolution;malaria;biocontrol
DOI:
doi:10.5061/dryad.24kj1
摘要:
Entomopathogenic fungi such as Beauveria bassiana are currently considered as a potential control agent for malaria mosquitoes. The success of suc
Ministering to the sick, China, ca.1920-1949
负责人:
关键词:
group portraits Clergy Medical personnel Rural areas
DOI:
doi:10.25549/impa-c123-81294
摘要:
misère à secourir dans laes quartiers pauvres! Two missionary sister doctors or nurses attend patients in the pour section of the village. A building
Data from: Foster care-givers influence brood pathogen resistance in ants
负责人:
关键词:
social immunity pathogen resistance development Beauveria fungi social insects Formica ants
DOI:
doi:10.5061/dryad.t3h6j
摘要:
antly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers tha
Data from: Maternal pathogen exposure causes diet- and pathogen-specific transgenerational costs
负责人:
关键词:
cost of immunity;Beauveria bassiana;transgenerational effects;Bacillus thuringiensis;Plodia interpunctella;disease ecology
DOI:
doi:10.5061/dryad.t0p4v
摘要:
bacterium Bacillus thuringiensis and fungus Beauveria bassiana. Mothers were exposed to low doses of one or both pathogens, or a control. Offspring from each family were reared
Animaux
负责人:
关键词:
Anthropocentrisme Droit Nature Règne animal
DOI:
doi:10.17184/eac.anthropen.054
摘要:
sauvages dans des lieux d\u2019où elles avaient disparus).Les bin?mes fondateurs sujet/objet et nature/culture, dont sont dénoncés respectivement la force de
Data from: Ants medicate to fight disease
负责人:
关键词:
sociality;Beauveria bassiana;Parasitism;Behavior;Formica fusca
DOI:
doi:10.5061/dryad.qm7gg
摘要:
Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self-medication, which occurs when an organism consumes biologically active compounds to clear, inhibit or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (Reactive Oxygen Species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanism, and provides evidence that social insects medicate themselves against fungal infection, using a substance that carries a fitness cost to uninfected individuals.
Data from: Including community composition in biodiversity-productivity models
负责人:
关键词:
Linaria vulgaris Mill.;Hypericum perforatum L.;Juglans regia L.;Rubus sp.;Digitaria sanguinalis (L.) Scop.;Juncus sp.;Tanacetum vulgare L.;Pastinaca sativa L.;Polygonum aviculare L.;Leucanthemum vulgare Lam.;Euphorbia stricta L.;Sonchus asper (L.) Hill;Epilobium sp.;Capsella bursa-pastoris (L.) Medik.;Onobrychis viciifolia Scop.;Sinapis alba L.;Anthemis tinctoria L.;Centaurea cyanus L.;Chenopodium sp.;Ranunculus repens L.;Elymus repens (L.) Gould;Scrophularia nodosa L.;Sonchus arvensis L.;Mercurialis annua L.;Stellaria media (L.) Vill.;Centaurea jacea L.;Festuca sp.;Conyza canadensis (L.) Cronquist;Galium aparine L.;Campanula patula L.;Sonchus oleraceus L.;Lotus corniculatus L.;Cichorium intybus L.;Senecio vulgaris L.;Filaginella uliginosa (L.) Opiz;Lactuca serriola L.;Taraxacum officinale;Plantago major L.;Salix alba L.;Geranium rotundifolium L.;Lamium amplexicaule L.;Melilotus albus Medik.;Polygonum mite (=Persicaria laxiflora);Veronica serpyllifolia L.;Acer pseudoplatanus;Medicago sativa L.;Agrostis stolonifera L.;Cirsium arvense (L.) Scop.;Daucus carota L.;Orobanche sp.;Dactylis glomerata L.;Echium vulgare L.;Phleum pratense agg.;Polygonum sp.;Convolvulus arvensis L.;Glechoma hederacea L.;Kickxia spuria (L.) Dumort.;Malva moschata L.;Echinochloa crus-galli (L.) P.Beauv.;Chaenorhinum minus (L.) Lange;Rumex obtusifolius L.;Origanum vulgare L.;Oenothera biennis L.;Malva sylvestris L.;Triticum sp.;Galinsoga ciliata (Raf.) S.F.Blake;Lamium purpureum L.;Holcus lanatus L.;Prunella vulgaris L.;species composition;percentage cover;Verbena officinalis L.;Verbascum thapsus L.;Setaria pumila (Poir.) Schult.;Equisetum arvense L.;Chenopodium album L.;Fallopia convolvulus (L.) A. L?we;Medicago lupulina L.;Poaceae (undetermined);Myosotis arvensis (L.) Hill;Lolium perenne L.;Plantago lanceolata L.;Vicia hirsuta (L.) Gray;Chenopodium polyspermum L.;Silene latifolia Poir.;Achillea millefolium L.;Trifolium repens L.;Dipsacus fullonum L.;Verbascum lychnitis L.;Papaver rhoeas L.;Aethusa cynapium L.;Euphorbia helioscopia L.;Kickxia elatine (L.) Dumort.;Juncus bufonius L.;Trifolium pratense L.;Galium album;Solanum nigrum L.;Agrostemma githago L.;Apera spica-venti (L.) P.Beauv.;Poa annua L.;Sagina apetala Ard.;Oxalis stricta L.;Crepis biennis L.;Arrhenatherum elatius (L.) P.Beauv. ex J.Presl & C.Presl;biodiversity;Brassica napus L.;ecosystem functioning;Potentilla reptans L.;Salix caprea L.;Amaranthus retroflexus L.;Anagallis arvensis L.;Chamomilla recutita (L.) Rauschert;Mentha arvensis L.;Veronica persica Poir.;Urtica dioica L.;Cerastium sp.;Viola arvensis Murray
DOI:
doi:10.5061/dryad.d2v35
摘要:
1. Studies on biodiversity and ecosystem functioning (BEF) have elicited debate over the interpretation of the positive relationship between species richness and plant productivity. Manipulating richness cannot be achieved without affecting composition; it is thus essential to consider the latter in statistical models. 2. We firstly review existing approaches that use species richness as an explanatory variable and propose modifications to improve their performance. We use an original dataset to illustrate the analyses. The classical method where composition is coded as a factor with a level for each different species mixture can be improved by defining the levels using clustering. Methods based on ordinations reduce the dimensionality of plant composition and use the new coordinates as fixed effects; they provide a much better fit to our observations. 3. Secondly, we develop a new method where composition is included as a similarity matrix affecting the residual variance-covariance. Similarity in composition between plots is treated in the same way as shared evolutionary history between species in phylogenetic regression. We find that it outperforms the other models. 4. We discuss the different approaches and suggest that our method is particularly suited for observational studies or for manipulative studies where plant diversity is not kept constant by weeding. By treating species composition in an intuitive and sensible way, it offers a valuable and powerful complement to existing models.

首页上一页12345下一页尾页

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充