A hearing device for use with a cochlear implant system is disclosed. An input portion receives, as a stimulus, an acoustic signal, converts the acoustic signal into an electrical acoustic signal and provides the electrical acoustic signal. A processing portion processes the electrical acoustic signal and conducts an active grounding procedure. An implant portion being implantable at least partially in a cochlea of the user comprises a plurality of operation electrodes and a reference electrode, e.g. an external electrode being grounded and implantable outside of the cochlea of the user. The operation electrodes are driven by the processing portion on the basis of the electric acoustic signal. An electrode state setting section sets the plurality of operation electrodes into one of a high impedance state, a grounded state and a stimulating state in which a signal based on the electric acoustic signal is supplied a stimulation electrode of the plurality of operation electrodes. An electrode state setting pattern determining section selects, according to an operation mode of the cochlear implant system, one of a plurality of electrode state setting patterns, wherein each of the electrode state setting patterns is adapted to enable a stimulation by a stimulation electrode of the plurality of operation electrodes being in a stimulating state and at least one of the plurality of operation electrodes being in a grounded state or in a high impedance state. The electrode state setting section sets the plurality of operation electrodes into the specified electrode state according to the selected electrode state setting pattern.