An aquatic environment water parameter testing method that utilizes the conductivity of a liquid sample of an aquatic environment to correct an optical reading of a chemical indicator that has been exposed to the liquid sample to determine the level of a constituent in the aquatic environment. The conductivity of the liquid sample is determined, the chemical indicator element is exposed to the liquid sample, an optical reading is measured from the chemical indicator, and the optical reading is corrected using the conductivity. The temperature of the liquid sample may be utilized to correct the conductivity prior to correcting the optical reading. The temperature of an optical reader used to measure the optical reading may be utilized to correct the optical reading.