In accordance with one aspect of this disclosure, an end effector assembly for a surgical device includes: a first jaw having a first engagement surface a second jaw having a second engagement surface, wherein the jaws are movable between open and closed configurations, and are arranged to receive tissue therebetween when open and to exert force on tissue when closed and a drive assembly operatively connected to at least the first jaw to move at least the first jaw to transition the jaws between the open and closed configurations. The jaws variably exert force on tissue as a function of distance between engagement surfaces so forces applied to tissue by the jaws progressively increase when the engagement surfaces are spaced a first set of distances from each other and these forces substantially plateau when the engagement surfaces are spaced a second set of distances from each other, wherein the first distances are greater than the second distances. In accordance with another aspect of this disclosure, an end effector assembly for a surgical device includes first and second jaws having first and second engagement surfaces, respectively, wherein one or both jaws are movable with respect to the other jaw to transition between open and closed configurations. The jaws receive tissue therebetween when open and exert force on tissue via the engagement surfaces when closed. A drive assembly is operatively connected to at least one jaw, and is operable to transition the jaws between the open and closed configurations, so the jaws variably exert force on tissue as a function of distance between the first and second engagement surfaces. A first electrode is disposed on the first jaw and a second electrode is disposed on the second jaw, so distance between the first and second electrodes varies along a width of the jaws to provide multiple varied distances along the width of the jaws. In accordance with yet another aspect of this disclosure, a surgical device includes a handle