Conventionally, a neuronal controller located inside the central nervous system governing the maintenance of the upright posture of the human body is designed from a control system perspective using proportional-integral-derivative (PID) controllers, wherein human postural sway is modeled either along a sagittal plan or along a frontal plane separately resulting in limited insights on intricacies of a governing neuronal controller. Also, existing neuronal controllers using a reinforcement learning (RL) paradigm are based on complex actor-critic on-policy algorithms. Analyzing human postural sway is critical to detect markers for progression of balance impairments. The present disclosure facilitates modelling the neuronal controller using a simplified RL algorithm, capable of producing postural sway characteristics in both sagittal and frontal plane together. The Q-learning technique of the RL paradigm is employed for learning an optimal state-action value (Q-value) function for a tuneable Markov Decision Process (MDP) model.