The present provides a biomaterial composed in part of a porous material having an internal structure that has been completely controlled so as to optimize living tissue infiltration or cell introduction, a method of manufacturing, and uses thereof, including bio-implant materials for artificial bones, artificial joints and artificial tooth roots, and cell culture supports the biomaterial undergoes increased infiltration by living tissues and the like owing to the formation of a porous region in at least a portion of the material, wherein the porous region is a porous body having therein a group of oriented pores that has an orientation and is made up of pores whose size, shape and direction have been controlled to optimize living tissue infiltration or cell introduction, and also having formed therein connecting pores that link together the primary pores and enable the passage of bodily fluids and gas bubbles, and formed with a spatial configuration in which the oriented pores are not directly connected to other oriented pores and the connecting pores which link together the oriented pores are not directly connected to other connecting pores.